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1
Introduction

Figure 1.1: The GUI interface for
the AnalyzER network analysis
program1.1 Overview

The endoplasmic reticulum (ER) forms a complex and dynamic
network of tubules and sheet-like cisternae that ramify throughout
the cytoplasm (Fig. 1.2), see Westrate et. al. (2015)1. The aim of the 1 L. M. Westrate, J. E. Lee, W. A. Prinz,

and G. K. Voeltz. Form follows func-
tion: The importance of endoplasmic
reticulum shape. Annual Review of
Biochemistry, 84:791–811., 2015

ER network analysis program is to quantify:

• The length, width, morphology and protein localisation along ER
tubules

• The size, shape, and protein distribution within and around the
perimeter of the ER cisternae

• The topological organisation of the tubular and cisternal network
determined using graph-theoretic metrics
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• The local speed and direction of movement of tubules and
cisternae

• The presence and distribution of immobile nodes, tubules and
cisternae using persistency mapping

• The size and shape of the polygonal regions enclosed by the
network

Figure 1.2: Schematic representa-
tion of typical ER morphology

The programs were designed to quantify ER organisation in
confocal optical sections of plant epidermal cells, where the ER
is confined to a very thin layer of cytoplasm appressed to the
periclinal cell wall as a planar, 2-D network, but can also be applied
to peripheral ER in spreading animal cells grown in culture, where
the ER is also constrained to a 2-D network. The input image
typically comprises a single plane (x,y) confocal fluorescence image
of ER-targeted fluorescent protein; a single plane multi-channel
(x,y,λ) image or a multi-channel time-series (x,y,λ,t). The network
analysis progresses through a number of parallel threads that are
designed to extract different information from the underlying
image to characterise the tubular network, cisternae and enclosed
polygonal regions. A flow diagram of the overall sequence for
morphological measurements for a single (x,y) plane is shown in
Fig. 1.3.

1.2 Quantitation of network dynamics

The plant ER is highly dynamic, with much of the network being
continuously re-modelled with regions of tubule growth, shrink-
age, or lateral sliding, expansion, contraction and movement of
cisternae, and highly dynamic streams running along actin cables2.

2 L. R. Griffing, C. Lin, C. Perico,
R. R. White, and I. Sparkes. Plant ER
geometry and dynamics: biophysical
and cytoskeletal control during growth
and biotic response. Protoplasma, 254:
43–56, 2017

To capture some of these dynamics from time-series images, net-
work extraction and analysis can be repeated for each frame in a
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Figure 1.3: A flow diagram show-
ing the main steps in the ER
analysis. (A) The starting point is
typically a single channel confocal
fluorescence of the ER labelled
with a fluorescent protein. (B) The
minimum and maximum tubule
diameters are estimated manually
from line transects to resize the
image and standardise all the
subsequent processing parameters;
(C) ER tubules are segmented
following filtering and enhance-
ment steps to give a single pixel
wide skeleton. This provides basic
morphological information on the
length and width of the tubules,
and can be interrogated further to
examine individual tubule mor-
phology. (D) The analysis can be
constrained to a particular cell or
sub-cellular region by masking
the image; (E) ER cisternae are
detected independently using
image opening followed by ac-
tive contour refinement; (F) the
performance of the automated
segmentation approaches can be
compared to a ground-truth pixel
skeleton defined manually
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time-series to extract time-dependent changes. Analysis of a multi-
channel time-series follows the same pattern as a single channel
time-series image, but also allows comparison between the different
channels, usually as a ratio or covariance measure (Fig. 1.4).

time

channel
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(x,y) image
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(x,y) image
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(x,y) image
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Figure 1.4: Measurement of ER
structure and dynamics in multi-
channel time-series images to
include time-varying metrics,
such as persistency, speed and
direction

The local velocity of tubules and cisternae can be quantified
through the time-series using optical flow techniques3 (see Chapter 3 S. Baker, D. Scharstein, J. P. Lewis,

S. Roth, M. J. Black, and R. Szeliski. A
database and evaluation methodology
for optical flow. International Journal of
Computer Vision, 92:1–31, 2011

7).
The plant ER network also has a subset of static elements, such

as ER-plasma membrane contact sites (EPCS), that remain in a fixed
position for a period of time4. The spatial persistence of tubules, 4 I. Sparkes, J. Runions, C. Hawes, and

L. Griffing. Movement and remodeling
of the endoplasmic reticulum in
nondividing cells of tobacco leaves. The
Plant Cell, 21:3937–3949, 2009b

cisternae or specific puncta can be used to identify fixed scaffolding
points by quantifying parts of the network that remain in position
over a given time interval using persistency mapping (see Chapter
8).

1.3 Segmentation of the ER network

The simplest method to identify the ER automatically would be
an intensity-based segmentation of the fluorescent image to give a
binary image, with ones representing the ER structure and zeros
for the background. However, the resultant binary image is criti-
cally dependent on the value for the threshold used, and it is rare
that a single threshold provides adequate segmentation without
either losing dimmer structures if it is set too high, or artificially
expanding and fusing adjacent regions if it is set too low5. Thus the

5 A.-N. Bouchekhima, L. Frigerio, and
M Kirkilionis. Geometric quantification
of the plant endoplasmic reticulum. J.
Microscopy, 234:158–172, 2009

approach adopted here exploits additional intensity-independent
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information over a range of scales and orientations to enhance the
network structure, prior to segmentation as a single-pixel wide
skeleton (Fig. 1.5). Full details of the different methods are given in
Chapter 2.

Figure 1.5: Conversion of the
ER image to a single-pixel wide
skeleton

The expected width of the ER tubule is ranges from 30 nm in
yeast to 50-70 nm in plant and animal cells (Westrate et. al., 2015),
which is below the resolution of the confocal microscope, but can
just be resolved with super-resolution techniques, such as stimu-
lated emission depletion microscopy (STED6). Nevertheless, for

6 B. Hein, K. I. Willig, and S. W. Hell.
Stimulated emission depletion (sted)
nanoscopy of a fluorescent protein-
labeled organelle inside a living cell.
PNAS, 105:14271–14276, 2008

most laboratories, access to super-resolution techniques may be
limited, necessitating the development of approaches that can be
used on a routine basis with existing tools, particularly for dynam-
ics imaging of ER movement in living tissues7. In principle, the

7 T.J. Lambert and J.C. Waters. Navi-
gating challenges in the application of
superresolution microscopy. J. Cell Biol.,
jcb.201610011, 2016

width of the ER can be estimated from the intensity information,
even if this is below the resolution limit of the microscope system,
with assumptions about the distribution of the fluorescent lumenal
marker and the point-spread-function (psf) of the microscope8. In

8 G. J. Streekstra and J. van Pelt.
Analysis of tubular structures in three-
dimensional confocal images. Network:
Computation in Neural Systems, 13:
381–395, 2002

the approach adopted here, the skeleton is used as a template to
interrogate the image locally to provide an estimate of the relative
amount of fluorescent probe present, and the width is inferred from
the integrated intensity signal.

Topological measures of the ER network structure can also be
extracted following conversion of the pixel skeleton to a weighted,
undirected graph, where nodes represent junction points and edges
represent the tubules that connect them (Fig. 1.6). Identification
of nodes and edges also allows assignment of ER metrics (length,
width, velocity, persistence) to individual tubules. The metric can
be displayed as colour-coded edges superimposed on the image, or
mapped back into the pixel skeleton.

Figure 1.6: Conversion of the ER
skeleton to a weighted graph

Unlike morphological measurements, the topology of the net-
work is less sensitive to the resolution of the imaging system as it
reflects the connectivity of the ER rather than the physical size of
the components (Bouchekhima et al., 2009).

1.4 Analysis of the ER cisternae

The ER cisternae are typically segmented and analysed separately
to give morphological measures, such as their area and shape pa-
rameters (see Chapter 11). In addition, the distribution of different
ER-shaping proteins can be tracked along the perimeter of the cis-
ternae, or analysed in radial profiles across the cisternal boundary
(Fig. 1.7). When the network is converted to a graph representation,
the ER cisternae are represented as a ’super-node’ placed at the
weighted centroid and connected to all the tubules incident on the
boundary.

Recently it has been proposed that many sheet-like regions,
that would previously have been identified as ER-cisternae with
a continuous lumen, may actually result from local appression of
multiple tubes to give a sub-resolution tubular matrix that can only
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Figure 1.7: Characterisation of
ER cisternae through morpholog-
ical measurements and texture
analysis

be resolved with super-resolution techniques9. If this is correct,

9 C.J. Nixon-Abell, J.and Obara, A.V.
Weigel, D. Li, W.R. Legant, C.S.
Xu, H.A. Pasolli, K. Harvey, H.F.
Hess, E. Betzig, C. Blackstone, and
J. Lippincott-Schwartz. Increased spa-
tiotemporal resolution reveals highly
dynamic dense tubular matrices in the
peripheral er. Science, 354:aaf3928, 2016

then tubular markers should also be associated with the tubular
matrix, providing some texture to the apparent sheet regions.
Texture measures can be determined from pairwise comparison of
pixel values at varying distances and orientation to give a grey-level
co-occurrence matrix (GLCM)10.

10 R.M. Haralick, K. Shanmugam, and
I. Dinstein. Textural features for image
classification. IEEE Transactions on
systems, man, and cybernetics, pages
610–621, 1973

1.5 Polygonal regions

The polygonal regions enclosed by the ER network can also be
segmented and their statistical properties measured in much the
same way as morphological measurements of the ER cisternae. A
complete measurement set would require a full 3-D image and 3-D
segmentation methods which is beyond the scope of the current
software. Thus at present, only statistics for fully enclosed polygons
in the imaging plane are calculated.



2
Approaches to ridge enhancement and segmentation

2.1 Introduction

There are a wide range of different approaches that could be used
to enhance the ridge-like structures in ER networks. This Chapter
provides some of the theoretical background to the approaches
implemented in the network analysis package.

2.2 ‘Vesselness’

One of the first methods to identify ridges exploited the local curva-
ture of the intensity landscape as estimated from the Hessian (Hσ),
comprising second-order partial derivatives, Daa along direction a,
of the intensity image (I), where the value of the standard deviation
of the Gaussian kernel (σ) is varied over a range of scales that span
the sizes of the underlying features1, see for example Fig. 2.1A-C:

1 A. F. Frangi, W. J. Niessen, K.L.
Vincken, and M.A. Viergever. Multiscale
vessel enhancement filtering, pages 130–
137. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1998

Hσ =

[
Dxx Dxy

Dxy Dyy

]
=

 δ2 I
δx2 ∗ Gσ

δ2 I
δxδy ∗ Gσ

δ2 I
δxδy ∗ Gσ

δ2 I
δy2 ∗ Gσ

 (2.1)

where

Gσ =
1

2πσ2 e−
(x2+y2)

2σ2 (2.2)

In the resultant scale-space representation, further information
on ridge-like features can be extracted from the eigenvalues and
eigenvectors of the Hessian, which show characteristic behaviour
for a filamentous structure. By ordering the eigenvalues in terms
of their absolute magnitude (|λ1| < |λ2|, for a 2D image), the
smallest eigenvalue (|λ1|) denotes the minimum change in intensity,
with the corresponding eigenvector oriented along the centreline
of the ridge, whilst the largest eigenvalue (|λ2|) and eigenvector
determine the orientation of the maximum curvature, normal
to the ridge centreline. Prominent structures are distinguished
from the background by relatively large values of the eigenvalues

(
√

λ2
1 + λ2

2). In addition, the ratio |λ1|/|λ2| gives an indication
of how blob-like (|λ1| ≈ |λ2|) or elongated and filament-like
(|λ1| � |λ2|) the structure is at that point. Thus the ‘Vesselness’ (Vσ)
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Figure 2.1: Frangi ‘Vesselness’
filter. (A-C) show surface plots of
the Dxx, Dxy and Dxy filters at
scale 7 that are used to calculate
the second-order derivative of
the image. The filters are shown
inverted to highlight the shape
of the ridge detector; (D) The
‘Vesselness’ output, calculated
over 11 scales; (E) The scale at
which the maximum response
occurred; (F) the orientation of the
maximum response.

measure (Frangi et al. 1998), defined by Equation (2.3), is large at
those pixels that are part of a linear structure of scale (σ).

Vσ = e
−

λ2
1

2β2λ2
2

(
1− e

λ2
1+λ2

2
2c2

)
(2.3)

Note that the relative contributions of the geometric ratio and
the intensity components at a given scale (σ) are controlled by the
coefficients β and c, respectively. Typically, β is set to 0.5 and c is set
to half the maximum Hessian norm. Multi-scale ‘Vesselness’, for a
given set of scales spanning the expected width of the vessels, can
be computed as the maximum of the ‘Vesselness’ values calculated
at each scale (Fig. 2.1D,E), and the eigenvectors at that scale used to
define local orientation (Frangi et al. 1998).

Note: whilst contrast for the tubular regions is improved, only
the edges of the cisternal regions are retained in the enhanced
image.

2.3 ‘Neuriteness’

An alternative weighting of the eigenvalues of the Hessian matrix
was proposed by Meijering et al. (2004)2: 2 E. Meijering, M. Jacob, J. Sarria,

P. Steiner, H. Hirling, and M Unser.
Design and validation of a tool for
neurite tracing and analysis in fluores-
cence microscopy images. Cytometry, 58:
167 – 176, 2004

H′ =

[
Dxx + αDyy (1− α)Dxy

(1− α)Dxy Dyy + αDxx

]
(2.4)

Where α is set to be −1/3 such that the filter used in the calcu-
lation of the Hessian matrix is maximally flat in its longitudinal di-
rection, effectively generating an anisotropic second order Gaussian
filter (Fig. 2.2A). Conveniently, these kernels can be implemented as
steerable filters constructed from a set of basis kernels3. The ‘Neu-

3 W.T. Freeman and E.H. Adelson. The
design and use of steerable filters. IEEE
Trans. Pattern Analysis and Machine
Intelligence, 9:891–906, 1991

riteness’ measure at scale σ, (Nσ) is determined from the modified
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eigenvalues as:

Nσ =


λσ

λσ,min
if λσ < 0

0 if λσ ≥ 0
(2.5)

where λσ is the larger in absolute magnitude of the two modified
eigenvalues, and λσ,min is the smallest value of λ over all pixels
such that:

λσ,1
′ = λσ,1 + αλσ,2 (2.6)

λσ,2
′ = λσ,2 + αλσ,1 (2.7)

λσ = max
(
|λσ,1

′|, |λσ,2
′|
)

(2.8)

λσ,min = min
p∈I

(λσ) (2.9)

λσ,1, λσ,2 are the eigenvalues of the Hessian matrix Hσ(p), at
pixel p, for a given scale parameter σ. The maximum response
across all scales gives the ‘Neuriteness’ image (Fig. 2.2C)

Figure 2.2: Meijering ‘Neurite-
ness’ filter. (A) A surface plot for
the ’flattened’ Dxx filter, shown
inverted to highlight the shape of
the ridge detector; (B) A normal
Dxx filter for comparison; (C) The
‘Neuriteness’ output, calculated
over 7 scales.

2.4 Second-order anisotropic Gaussian kernels (SOAGK)

The use of second-order derivatives of anisotropic Gaussian ker-
nels (SOAGKs) was developed further by Shui et al. (2012)4 and

4 P.-L. Shui and W.-C. Zhang. Noise-
robust edge detector combining
isotropic and anisotropic gaussian
kernels. Pattern Recognition, 45:806 –
820, 2012

Lopez-Molina et al. (2015)5 to improve detection of ridge like ele-

5 C. Lopez-Molina, G. V. D. de Ulzur-
run, J. M. Baetens, J. Van den Bulcke,
and B. De Baets. Unsupervised
ridge detection using second order
anisotropic gaussian kernels. Signal
Processing, 116:55–67, 2015

ments. The SOAGK are applied at a range of orientations to give
anisotropic directional derivative (ANDD) filters at each scale
(Fig. 2.3, A-C). On their own ANDD filters also generate extensions
at the end of edge segments, termed edge-stretch, which has the
benefit of improving local connectivity by filling in small gaps, par-
ticularly at junctions that occur in the ‘Vesselness’ filter for example,
but with the disadvantage of adding spurious features at the end of
edge segments. The latter errors can be minimised by using a fused
detector that combines the ANDD filter with a small isotropic Gaus-
sian as a geometric mean (Shui and Zhang, 2012). The enhanced
edge image is taken as the maximum response at any scale and
orientation (Fig. 2.3, E). These filters give strong responses when
aligned to the dominant ridge at each scale, and provide estimates
of the ridge intensity and ridge orientation without calculation
of the eigenvalues and eigenvectors. In addition, the response at
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junctions is not attenuated to the same degree as the ‘Vesselness’
response because of the edge-stretch phenomena. Conversion to a
single-pixel wide skeleton then uses local non-maximal suppression
to identify key pixels on the ridge centerline, followed by hysteresis
thresholding to identify pixels that form the connected skeleton.

Figure 2.3: Second-order
anisotropic Gaussian filter
(SOAGK) after Lopez-Molina
et al (2015). (A-C) Surface plots
for the Dxx filter with 1,1.3 and
1.5 levels of anisotropy, shown
inverted to highlight the shape of
the ridge detector; (D) Original
Physarum image (E) Output from
the ‘SOAGK’ filter, calculated
over 7 scales; (F) direction of the
dominant ridge.

2.5 Intensity-independent enhancement using phase-congruency

While ridge enhancement can be built on purely intensity-based
filters, such as the Hessian or SOAGKs, these have the downside
of being sensitive to changes in image contrast, which often leads
to loss of a few pixels from the skeleton during the subsequent
thresholding step, effectively disconnecting these edges. This can
be ameliorated to some extent by inclusion of a local contrast equal-
isation step prior to enhancement (Shui and Zhang, 2012), or by
the use of adaptive or hysteresis thresholding during segmentation
(Lopez-Molina et al. 2015). Nevertheless, in these approaches it is
critical to establish a reliable, context-dependent threshold selection
to achieve segmentation of a fully connected network.

Human observers face a similar challenge when trying to dis-
criminate edges or ridges is a complex visual field. Morrone and
Owens (1987)6 proposed that human edge perception depends on 6 M.C. Morrone and R.A. Owens.

Feature detection from local energy.
Pattern Recognition Letters, 6:303 – 313,
1987

the degree of phase congruency, which is independent of the im-
age brightness. Phase congruency can be estimated from the local
energy at each location, determined by convolution of the image
with Gabor filters at varying scale and orientation7. The phase con- 7 S. Venkatesh and R. Owens. On the

classification of image features. Pattern
Recognition Letters, 11:339–349, 1990

gruency approach has been developed further as a generic means
to extract a variety of image features by Kovesi8. Kovesi also intro-

8 P. Kovesi. Image features from phase
congruency. Videre: Journal of Computer
Vision Research, 1:1–26, 1999

duced a range of improvements to the original measure to improve
its overall utility, including log Gabor filters to increase the filter
bandwidth, procedures for automated noise rejection, weighting
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to select against phase congruency of only a few frequencies, and
improved spatial precision by including both the cosine and sine of
the phase in the estimate. These provide good ridge enhancement,
irrespective of image intensity, but also increase the number of
parameters that can be tuned to achieve the best enhancement in
any particular context.

Following Kovesi, the local energy for a one-dimensional profile,
I(x) is given by:

E(x) =
√

F2(x) + H2(x) (2.10)

where F(x) is the signal with its DC component removed, and
H(x) is the Hilbert transform of F(x), obtained by convolving the
signal with a quadrature pair of log Gabor filters at scale n, and
summing the even filter convolutions (en(x)) to give F(x), and the
odd filter convolutions (on(x)) to give H(x). The phase congru-
ency PC(x), is normalised by the sum of the Fourier amplitudes
∑n An(x) ' ∑n

√
en(x)2 + on(x)2, with the addition of a small

constant ε to improve stability at low Fourier amplitudes:

PC(x) =
E(x)

∑n An + ε
(2.11)

The log Gabor filter bank is controlled by the minimum wave-
length scale, the number of scales, the frequency bandwidth, and
the number of filter orientations. Each of these requires some
optimisation to achieve good enhancement for specific types of
biological networks (Fig. 2.4B).

Figure 2.4: Phase Congruency
filter. (A) Original image; (B)
Set of log Gabor filters in the
Fourier domain for 6 scales and
6 orientations; (C) Orientation
image from the maximum re-
sponse; (D) Maximum moment
from the phase-congruency filter
as a measure of edge strength of
the tubules; (E) Minimum mo-
ment from the phase-congruency
response, which highlights junc-
tions; (F) Local weighted mean
phase angle (‘Feature Type’),
which provides a robust output for
segmentation.

The next tuneable parameter controls the amount of noise rejec-
tion. To estimate the amount of noise adaptively from the image,
Kovesi used a measure of the mean (µR) and variance (σ2

R) of
the Rayleigh distribution (R) describing the noise distribution at
the smallest scale, with the assumption that ridges are relatively
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sparsely distributed in the image, so the mean at this scale will be
dominated by background noise. Thus the noise threshold (T), is
given by the mean noise response plus some number, k, of devia-
tion units:

T = µR + kσR (2.12)

The local energy term E(x) is therefore modified by subtracting
the estimated noise (and setting any values below zero to zero).

The second set of tuneable parameters relate to the minimum
spread of frequencies required to constitute a useful estimate of
phase congruency. In the case of the ER network we are concerned
with the detection of ridges, rather than lines or step functions.
The expected power spectrum of a ridge falls off at 1/ω4, where
ω is the centre frequency of the filter, which gives an expected
distribution of frequency responses strongly skewed towards low-
frequency end. The significance of PC(x) can be down-weighted
if the spread of frequencies is too narrow, however, in the case
of ridge detection, this criterion should not be too harsh. Kovesi
provides an estimate of the frequency spread by considering the
normalised ratio of the sum of the Fourier amplitudes divided by
the maximum response:

s(x) =
1
N

(
∑n An(x)

Amax(x) + ε

)
(2.13)

Where N is the total number of scales, Amax(x) is the maximum
filter response at x, and ε prevents division by zero. To penalise
regions with few frequency components, the weighting function is
constructed as a sigmoidal function:

W(x) =
1

1 + eγ(c−s(x))
(2.14)

where c is the cut-off value below which phase congruency val-
ues are penalised, and γ is a gain factor that controls the sharpness
of the cut-off

PC(x) =
W(x)bE(x)− Tc

∑n An(x) + ε
(2.15)

Where b c denotes that E(x)− T is equal to itself for positive values
and zero otherwise.

The final amendment that Kovesi proposes is to include the
information from both the cosine of the phase deviation, which
should be large if phase congruency is high, and the absolute value
of the sine of the phase deviation, which should be small (2.16):

∆Φn(x) = cos(φn(x)− φ̄(x)− | sin(φn(x)− φ̄(x)| (2.16)

This gives the complete estimate of phase congruency as:

PC(x) = ∑n W(x)bAn(x)∆Φn(x)− Tc
∑n An(x) + ε

(2.17)
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The two dimensional extension of the phase congruency gives:

PC(x) = ∑o ∑n Wo(x)bAno(x)∆Φno(x)− Toc
∑o ∑n Ano(x) + ε

(2.18)

Where o is the index over orientations.





3
Installation

3.1 Overview

All the programs were written in MATLAB (The Mathworks,
Nantick) and are packaged in a single compiled executable file for
distribution as a standalone package, or as an app that runs within
the MATLAB environment. The program, manual and tutorial can
be downloaded from the Oxford Research Archive:

https://ora.ox.ac.uk/

3.2 Installation of the stand-alone program

The software has been tested on Windows 10, and requires a min-
imum screen resolution of 1600 x 900. In addition, an appropriate
version of the MATLAB Compiler Runtime (MCR) is required
to install the set of shared libraries that enables execution of the
compiled MATLAB application. The MCR should automatically
download from the MathWorks website when the program is in-
stalled for the first time. Alternatively MCR can be downloaded
from the MathWorks Website:

http://www.mathworks.com/products/compiler/mcr.

To install the MCR and standalone package, double-click the
compiled MATLAB self-extracting archive file. This extracts the
MATLAB Runtime Installer from the archive, along with all the
files that make up the deployed MATLAB environment. Once
all the files have been extracted, the MATLAB Runtime Installer
starts automatically. When the MATLAB Runtime Installer starts, it
displays the following dialog box. Read the information and then
click Next to proceed with the installation.

Specify the folder in which you want to install the MATLAB
runtime in the Folder Selection dialog box and click Next. It is
recommended to keep the default settings as this ensures the path
to other program files is set automatically.

Note: On Windows systems, you can have multiple versions of
the MATLAB runtime on your computer, but only one installation
for any particular version. If you already have an existing instal-

https://ora.ox.ac.uk/
http://www.mathworks.com/products/compiler/mcr
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lation, the MATLAB runtime Installer does not display the Folder
Selection dialog box because you can only overwrite the existing
installation in the same folder.

Confirm your choices and click Install. The MATLAB Runtime
Installer starts copying files into the installation folder

Click Finish to exit the installer.



installation 23

MATLAB Runtime Installer Readme File: A readme.txt file is
included with the MATLAB Runtime Installer. This file, visible
when the MATLAB Runtime Installer is expanded, provides more
detailed information about the installer and the switches that can
be used with it.

3.3 Installation of the MATLAB app

The MATLAB® app installer file, .mlappinstall, contains everything
necessary to install and run an app within the MATLAB® envi-
ronment, including the source code, supporting data, information
(such as product dependencies), and the app icon. Double-clicking
on the .mlappinstall file should launch MATLAB if it is not already
running, and install the app in the app toolbar. the program can be
run, by clicking on the icon in the toolbar.

Note: Some functions may not be available in the app as they
require pre-compiled components such as MEX files, that are not
packaged in the app.

3.4 Installation of additional program files needed

A number of additional files needed to run the full suite of pro-
grams may also be installed at the same time as the main program.
The Bio-Formats package (Linkert et al. 2010

1) has been designed 1 M. Linkert, C. T. Rueden, C. Allan,
J. M. Burel, W. Moore, A. Patterson,
B. Loranger, J. Moore, C. Neves,
D. Macdonald, A. Tarkowska, C. Sticco,
E. Hill, M. Rossner, K. W. Eliceiri, and
J. R. Swedlow. Metadata matters: access
to image data in the real world. J Cell
Biol, 189:777–82, 2010

to read in images from different microscope manufacturers and
store them in a standardised format and should be included in the
program directory during installation. Full details are available on
the open microscopy website:

http://www.openmicroscopy.org/

If installed separately, the bioformats_packages.jar program
needs to be available on the search path or installation directory of
the matlab programs. bioformats_package.jar is available from:

http://downloads.openmicroscopy.org/bio-formats

The latest version of Java needs to be installed, and is available
from:

http://www.openmicroscopy.org/
http://downloads.openmicroscopy.org/bio-formats
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http://www.java.com/en/

Output of images at full resolution uses export_ f ig.m originally
written by Oliver Woodford (2008-2014) and now maintained by
Yair Altman (2015-). When exporting to vector format (PDF or EPS)
this function requires that ghostscript is installed on your system.
Ghostscript can be downloaded from:

http://www.ghostscript.com.

When exporting images to eps and pdf formats, export_ f ig
additionally requires pdftops, from the Xpdf suite of functions. This
can be downloaded from:

http://www.foolabs.com/xpdf

http://www.java.com/en/
http://www.ghostscript.com
http://www.foolabs.com/xpdf
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Loading images

a

b

Figure 4.1: (a) The Image load
panel, and (b) the Setup panel

4.1 The Image load panel

The ER network GUI automatically displays any image files present
in the current directory with the default *.tif extension when the
program is started (Fig. 4.2). The working directory can be changed
using the Directory button, and additional file types can be dis-
played using the *.jpg, *.png or *.* checkboxes.

A single image can be selected for processing in the left-hand
list box using a left mouse-click to highlight the name in the list
followed by clicking the > arrow. Multiple files in any combination
can be selected using Ctrl + left click to highlight the files, followed
by the > arrow. Alternatively, all the files can be selected with the
>> arrow and will appear in the right-hand list box. Individual
files, or all the files can be removed using the < and << arrows,
respectively.
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Figure 4.2: Image load panel:
Images in a range of file formats
can be imported for processing.

Many different filetypes can be opened directly using the Bio-
Formats program1 called by the import functions. Alternatively,

1 M. Linkert, C. T. Rueden, C. Allan,
J. M. Burel, W. Moore, A. Patterson,
B. Loranger, J. Moore, C. Neves,
D. Macdonald, A. Tarkowska, C. Sticco,
E. Hill, M. Rossner, K. W. Eliceiri, and
J. R. Swedlow. Metadata matters: access
to image data in the real world. J Cell
Biol, 189:777–82, 2010

greater control of the format of the imported image is available
through the Import button in the Setup panel (Fig. 4.3). This opens
up a new window to load, align, crop and filter the image, prior to
network analysis, and is described in Chapter 13.

4.2 Defining the channel order and bit-depth

In multi-channel images, the channel order may vary depending
on the precise imaging setup. The R,G,B drop-down menus in the
Setup panel can be used to re-order the channels to a standardised
format. So, for example, it may be convenient to assign an HDEL or
KDEL-marker delineating the ER lumen to channel 1, irrespective
of whether it has been tagged with a red or green fluorophor.

Many image file formats store images at either 8-bit or 16-bit,
whereas the data may be collected in 12-bit format. The 12-bit
check box ensures that the image is scaled to the full bit-depth.
Once imported, images are normalised to the range 0-1. If the
norm checkbox is ticked, each channel is normalised separately,
otherwise normalisation is between the minimum and maximum of
all channels.

Figure 4.3: Setup panel: Al-
lows the channel order to be
changed and images normalised
and cropped.

4.3 Image rotation

The image can be rotated by an arbitrary angle measured in degrees
anticlockwise using the value in the rotation text box. The Rotate
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button applies the rotation and displays the result on screen, scaled
to fit the window. Regions outside the original image are set to
zero.

4.4 Cropping the initial image

The crop button will automatically show the original or rotated
image, if applicable, sized to fill the display window, and prompts
the user to drag a rectangle on the image display using the mouse
to enclose the desired region-of-interest (ROI). On completion of
the rectangle, the image is cropped and the resulting sub-region
displayed. If there is an error in the region selected, the process can
be repeated by clicking on the filename in the listbox to reload the
original image. The co-ordinates of the cropped region are stored in
a parameter file associated with the image and are re-applied every
time the image is loaded if the adjacent use checkbox is ticked.

4.5 Image display controls

Once a filename is displayed in the right listbox, the image is
automatically loaded and displayed in the main window (Fig. 4.4).

Figure 4.4: Main image display,
thumbnail shortcut bar and
associated controls to adjust zoom
(a) and image contrast (b)

a

b
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If multiple files have been selected, the last one in the sequence
is shown. Any image can be viewed by clicking on it’s filename in
the right-hand listbox. At the same time, a thumbnail for the initial
image is also displayed in the thumbnail shortcut bar immediately
underneath the main display. Thumbnails for key steps in the
processing sequence are displayed once the appropriate step has
completed successfully, and can be used subsequently to switch
rapidly between different images.

A number of options to adjust the image displayed are available
in the Display controls panel. The main controls that are relevant
at this stage adjust the image size and contrast, through the zoom
(Fig. 4.4(a)), white level and black level sliders on the right of the
panel (Fig. 4.4(b)). The Fit button resizes the image to ensure all of
it is visible, whilst the 100% button gives a 1:1 image:screen pixel
scaling. The other commands in the Display controls panel will be
covered at a later stage in the manual.



5
Profile measurements

a

Figure 5.1: (a) The Profile panel

5.1 Measurement of the approximate tubule diameter

Images of the ER may have been collected at different pixel res-
olutions, depending on the microscope settings, and may span
different width scales depending on the experimental treatment
and genetic background. In addition, the pixel size may need to be
reduced below the optimal Nyquist sampling value for the micro-
scope to reduce downstream discretisation errors due to pixelation
when approximating circular processing kernels.

To standardise all the subsequent processing steps, it is useful to
define the expected minimum and maximum width of the tubular
components manually using a transect drawn on the image, using
the Set min and Set max buttons in the Profile panel (Fig. 5.2). The
image can be subsequently resampled to ensure that the minimum
tubule width is scaled to the width set in the target textbox.
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Figure 5.2: Image profile controls:
these allow the user to measure
the physical size of structures in
the image from transects that au-
tomatically calculate the FWHM
of the underlying feature. These
are used to estimate the mini-
mum and maximum diameters
of the tubules to standardise all
subsequent processing steps

When either the Set min or Set max buttons are clicked, the user
is prompted to draw a two-point transect on the image across a
tubule that, by eye, appears to be close to the smallest or largest
tubule diameter, respectively. On completion of the second mouse
click, a graph of the transect is displayed in the upper graph panel
(Fig. 5.3), with the line colour reflecting the intensity values of the
original RGB channels.

Figure 5.3: Profile measurements:
the graph shows the intensity
profile along a user-defined tran-
sect drawn on the image, along
with the full-width half-maximum
(FWHM) automatically calculated
from the peak height, in this case
for the green channel

In addition, the full-width at half-maximum (FWHM) peak
intensity is automatically calculated and displayed as:

• two dotted vertical lines on the graph;

• the estimated pixel width in the FWHM min and FWHM max
text boxes, respectively;

• the estimated pixel width and peak intensity (in normalised
units) values in the FWHM and peak text boxes for the R,G and
B channels;

Values for FWHM are given in pixels, whilst the peak intensities
are given in normalised units ranging from 0 to 1. Additional
profiles can be drawn at any stage without updating the FWHM
min and FWHM max text boxes by using the Profile button.

The value of FWHMmin is used to calculate a resampling fac-
tor needed to ensure that the minimum apparent tubule width
matches the target width (typically 3-7 pixels wide, depending
on the application) to reduce pixelation errors later on. Likewise,
FWHMmax is used to determine the number of scales to use in
the subsequent steps to ensure both that the largest tubules are
correctly segmented, and also that structures above this limit are
identified as cisternae. As these scaling factors are approximate, it
is sufficient to round the values of FWHMmin and FWHMmax to
convenient integer values (usually odd numbers to ensure that the
processing kernels are centered on the pixel of interest).

The Calibration button prompts the user to define the physical
scale between two measurement points on the image, which then
updates the adjacent textbox to give the pixel spacing in micron per
pixel. Alternatively, the pixel size can be entered manually in the
text box, if the information is available from the original image file.
Likewise, the time interval between frames in time-series images
can be entered in the time text box.
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Image processing and extraction of a pixel skeleton

a

b

c

Figure 6.1: (a) The Image pro-
cessing panel, (b) The Network
template panel and (c) The Skele-
ton extract panel

6.1 General principles

Operations are grouped into a number of control panels including
Processing (resampling, background subtraction and filtering),
Network template construction, and the final Skeleton extraction
(ridge enhancement, skeletonization). Each step has a number of
options that can be selected from the adjacent dropdown menu on
the left. In addition, some steps allow the user to manually modify
the image produced at a particular step, or to set the values for
specific parameters. The use checkboxes enable the user to toggle
particular steps on or off to explore the impact on the final skeleton.
If a particular step is not operational, the corresponding controls
are greyed-out.
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6.2 Image processing

The Image processing panel (Fig. 6.2) contains the controls needed
to resample the image so that tubules are set to be a similar width
(in pixels) for subsequent network extraction, subtract the back-
ground, and apply some level of smoothing.

Figure 6.2: Image pre-processing
panel: These controls set the
parameters to resample, subtract
background and smooth the image

Each step can be tested individually using the appropriate
button. Alternatively the process button applies all the operations
selected.

6.3 Image resampling

The value of FWHMmin estimated from the Profile measurements
is automatically used to calculate the resampling factor needed
to ensure that the minimum tubule width matches the size set
by the target text box. Likewise, the FWHMmax value is used to
determine the number of scales to use in the subsequent steps to
ensure both that the largest tubules are correctly segmented, and
also that structures above this limit are identified as cisternae. As
the scaling required is approximate, it is sufficient to round the
values of FWHMmin and FWHMmax. The resample use checkbox
is active by default. If the box is unchecked, no resampling takes
place, but it is possible that subsequent steps do not perform as
expected. Once the resample button is clicked, the initial image is
resampled and displayed. The resample thumbnail is updated to
show a small icon taken from the center of the resampled image.

6.4 Background measurement and correction

Accurate measurements of the fluorescence signal from the ER
requires correction for instrument dark current, amplifier offset and
background signal. The Background checkbox enables a number
of options to automatically or manually correct the background
contribution including:

• ’Subtract’ : This will subtract a constant value from the image
and is appropriate for removing instrument black-level offsets
or very diffuse fluorescence. The value is set in the adjacent text
box and can be input manually, or measured using the measure
button which prompts the user to define a background ROI on
the image for the measurement.
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• ’Opening’ : the image is processed with an opening function us-
ing a disk-shaped kernel with the radius set by (1.2× FWHMmax)/(2×
resample) (i.e. 20% larger than the size of the largest tubule ex-
pected). This removes any features smaller than 1.2× FWHMmax

and provides an estimate of the local background around each
pixel. The opened image is subtracted from the original to cor-
rect for the local background. This method may be useful if
there is some out-of-focus blur in the image or an amount of
signal from another compartment, such as the cytoplasm. How-
ever, it is less useful if there are sheet-like regions larger than
1.2× FWHMmax, as these remain after the opening operation
and are then subtracted from the image, distorting the pixel
intensities in the neighbouring regions.

• ’Surface fit’ : this finds all the local minima across the image
and fits a surface to points in the 10-90% interval using a cubic
polynomial. The surface is converted to an image and subtracted
from the original. This method works if the network is sparse,
giving plenty of local background estimates across the image.

• ’Sub low pass’ : the image is filtered using a Gaussian kernel with
a large radius sufficient to remove all the high-frequency infor-
mation in the image. The standard deviation for the Gaussian
kernel is calculated as 2× FWHMmax, or approximately twice
the size of the largest tubule diameter. The low pass image is
subtracted from the original and the image re-normalised. This
approach also suffers if there are large sheet-like regions.

6.5 Filtering the image to improve signal-to-noise

Most simple noise reduction algorithms use isotropic kernels and
smooth the image equally in all directions. This is not desirable
when analysing the ER network, as the tubule boundaries will
become blurred. Instead a number of adaptive anisotropic filters are
provided that smooth within the tubular network structures, but do
not spread across boundaries.

The filter controls can be used to locally smooth the image with
various adaptive filters, and/or increase the contrast using contrast-
limited adaptive histogram equalisation (CLAHE). The current
options include:

• ’CLAHE’ : applies contrast-limited adaptive histogram equal-
isation1 to the image to expand the contrast range over local

1 K. Zuiderveld. Contrast limited adaptive
histograph equalization, pages 474–485.
Graphic Gems IV. Academic Press
Professional, San Diego:, 1994

regions.

• ’Coherence’ : applies an anisotropic diffusion filter written by
Dirk-Jan Kroon2 that smooths regions of low variance, but avoids

2 D. J. Kroon, C. H. Slump, and T. J.
Maal. Optimized anisotropic rotational
invariant diffusion scheme on cone-
beam ct. Med Image Comput Comput
Assist Interv, 13:221–8, 2010

blurring of object boundaries.

• ’Guided’ : applies an edge-preserving smoothing filter that is
guided by the intensities in the original image3

3 K. He, J. Sun, and X. Tang. Guided
image filtering. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
35:1397–1409, 2013
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• ’Coherence + CLAHE’ : applies the ’Coherence’ filter followed by
histogram equalisation.

• ’Guided + CLAHE’ : applies the ’Guided’ filter followed by his-
togram equalisation.

The filtering and contrast adjustment are applied to aid segmen-
tation of the pixel skeleton. Quantitative measurements of fluores-
cence intensities later on refer back to the background-corrected
image intensities. CLAHE helps the user see detail across the whole
image, but is only needed if the subsequent segmentation step is
dependent on image intensities.

6.6 Template construction

The template image is constructed from different combinations
of channels, sections and frames to ensure that the final pixel
skeleton captures all the relevant information available on the ER
structure. Thus, typically the ER-lumen is labelled with GFP-HDEL
or RFP-HDEL, which provides a reasonable marker to segment the
ER structure from a single channel on its own. If a second label
is present, such as reticulon-RFP, for example, then the average
or maximum intensity of both channels might provide a more
complete image of the ER. The channels to combine are selected
from the R,G and B check boxes, whilst the combination method is
selected from the adjacent drop down menu.

Figure 6.3: Setting up a template
for ER network extraction

If the image is a time-series, a separate template can be defined
for each image in the series, or from a limited range (set by the first
and last text boxes), or as a combination of images over time, set
by the method drop down menu. The window slider allows the
selected combination method to be applied over a varying time
window. This can be used to achieve a moving temporal average,
for example. Nevertheless, whilst temporal averaging helps to
remove noise, there is often too much movement in ER images for
this to be useful.

6.7 Setting up a boundary mask

Once the template has been defined, it may be appropriate to define
a boundary mask to exclude regions that should not be analysed,
or to restrict the analysis to a specific region of the cell or tissue
using the first set of controls in the Skeleton extract panel (Fig.
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6.4(a)). The mask is calculated from the template image and has the
same dimensionality. The default setting is to automatically apply
a boundary, but un-ticking the boundary use checkbox will disable
the boundary controls.

a Figure 6.4: Controls for the
boundary mask

Care is needed with this step as the thresholding operation
may introduce breaks in some dim tubules, which are then not
considered in subsequent processing steps. The adjacent dropdown
menu provides a number of options including:

• ’Background’ : prompts the user to define a ROI in a back-
ground area of the image. The threshold is then calculated as
the background mean + 2 ∗ SD units.

• ’T1’ : this segments the main structures using an automatic
threshold determined by Otsu’s method4 that minimizes the intr- 4 N. Otsu. A threshold selection method

from gray-level histograms. IEEE Trans.
Systems, Man, Cyber., 9:62–66, 1979

aclass variance of the foreground and background distributions,
but does not fill in any gaps or holes in the resulting binary
image. Only the largest connected component is retained.

• ’T1 fill’ : fills in any holes in the ’T1’ mask. This helps to correct
any small breaks in tubules within any fully enclosed polygo-
nal region, but masks out fewer background regions from the
subsequent enhancement and segmentation steps.

• ’T1 boundary’ : This initially segments the image using the T1
threshold, but then calculates the convex hull of the segmented
outline. This boundary is then collapsed down onto the most
prominent concave sections by an amount set using the Shrink
textbox (typically 0.5) and filled completely. This boundary can
be eroded further using the value set by the erode textbox in
pixels5.

5 Note: The erode function can be ap-
plied to any of the other segmentation
methods as well

• ’T2’, ’T2 fill’ and ’T2 boundary’ : these operate in a similar manner
to the ’T1’ settings, but use the lowest value of a two-threshold
partition of the image histogram and can be useful if there are a
number of very bright structures that distort a single threshold
separation of background and object. This can occur in the
presence of BFA bodies, for example.

• ’T3’, ’T3 fill’ and ’T3 boundary’ : these operate in a similar manner,
but use the lowest value of a three-threshold partition of the
image histogram.
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• ’Holes’, ’No holes’, and ’erode’ : these are the same as the ’T1’
methods and are included for backward compatibility.

• ’manual’ : used if the mask is to be defined manually (see Chap-
ter 15).

Clicking the Boundary button runs the chosen method, displays
the segmented binary image alongside the initial grayscale image
to aid comparison, and updates the boundary thumbnail (Fig. 6.5).
The outermost boundary can be plotted if the boundary checkbox
in the display controls panel is ticked. The area enclosed by the
outermost boundary controls the estimate of the area covered by
the network and impacts on any subsequent density estimates of
tubules or cisternae.

Figure 6.5: Side-by-side display
of the boundary segmentation
image using the ’T1’ option.
The boundary thumbnail is also
updated

Figure 6.6: Display control set-
tings for side-by-side montage

It is possible that the automatic boundary settings do not pro-
vide the desired masking of unwanted information, requiring the
user to define the mask manually. The edit button will open an
additional window with a set of tools to allow manual adjustment
of the binary image. Full details of the binary editing program
are given in Chapter 15. If a boundary image has been defined
manually, the use edit check box is automatically activated and
the manually defined boundary will be applied to subsequent
processing steps. The manually-defined boundary is saved in the
parameter file and can be re-applied or edited further anytime the
analysis is re-run.

The Reset button removes the stored version of the manually-
edited boundary mask. Use with care as this option may delete a
lot of careful editing!

6.8 Defining the ER cisternae

In addition to the tubular-reticulum, the ER includes sheet-like
regions called cisternae, or regions of closely appressed tubules
that are difficult to separate6. The methods used to segment the

6 C.J. Nixon-Abell, J.and Obara, A.V.
Weigel, D. Li, W.R. Legant, C.S.
Xu, H.A. Pasolli, K. Harvey, H.F.
Hess, E. Betzig, C. Blackstone, and
J. Lippincott-Schwartz. Increased spa-
tiotemporal resolution reveals highly
dynamic dense tubular matrices in the
peripheral er. Science, 354:aaf3928, 2016

tubular ER do not work with the cisternae, so a different set of
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controls are available to allow the user to segment these structures
independently (Fig. 6.7(b)).

b

Figure 6.7: (b) Controls for seg-
mentation of ER cisternae

To enable the Cisterna controls, the cisterna use check box needs
to be ticked. The adjacent drop down menu then gives access to
several different methods including:

• ’thresh1’ : Initially removes the tubular elements using greyscale
image opening with a radius set to be 20% greater than FWHMmax

of the tubules, and converts the resultant image to a binary mask
using Otsu’s automatic threshold. This is effective at detecting
larger sheet-like regions of the ER, but the resultant binary image
tends to give blob like features that extend beyond the original
cisternal regions.

• ’thresh2’, ’thresh3’ : Initially removes the tubular elements using
greyscale image opening with a radius set to be 20% greater
than FWHMmax of the tubules and then applies an automatic
segmentation using the lower threshold of a two-threshold
(thresh2) or three-threshold (thresh3) partitioning of the intensity
histogram.

• ’Opening’ : operates as ’thresh1’ and is included for backward
compatibility.

The AC checkbox applies an active-contour algorithm7 to shrink 7 T.F. Chan and L.A. Vese. Active
contours without edges. IEEE Trans.
Image Process., 10:266–277, 2001

the cisternae detected down to match the underlying intensity
profile. This often performs better than a simple opening operation
and is set as the default.

The initial cisternal segmentation is refined by an image opening
operation with a radius of 2 pixels to break any thin connecting
regions between adjacent cisternae, and the resulting objects are
filtered on the basis of their area to be above 0.3 µm2, chosen as the
area of persistent ’puncta’ that are associated with immobile scaffold
sites8. The minimum area (in µm2) can be set using the min textbox. 8 I. Sparkes, J. Runions, C. Hawes, and

L. Griffing. Movement and remodeling
of the endoplasmic reticulum in
nondividing cells of tobacco leaves. The
Plant Cell, 21:3937–3949, 2009b

This ensures that puncta are included in as nodes in the tubular
network, rather then being classified as small cisternae.

Clicking the Cisterna button runs the chosen method, updates
the cisterna thumbnail, and displays the segmented binary image
superimposed on the initial grayscale image in false-colour (Fig.
6.8 (a)). Once the cisternae have been defined, the perim checkbox
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in the display panel will superimpose the perimeter outline on
any displayed image in a dashed red border (Fig. 6.8 (b)), The
colour can be changed using the dropdown menu. A number of
morphology measurements of the cisternae are provided including
the area, major and minor axis lengths, perimeter and solidity.

(a) Detection of ER cisternae and appressed tubues

(b) Feature boundaries

Figure 6.8: Feature detection:
(a) False-colour merge of the
cisternae segmented using image
opening and active contours that
highlight ER cisternae or dense
regions of appressed tubules. (b)
The resulting cisternal boundary
can be superimposed on any
underlying image using the
perim checkbox

If no satisfactory segmentation of the cisternae can be achieved
with the automatic settings, the cisterna edit button opens the
binary editing window to allow manual adjustment of the binary
image. Full details of the binary editing program are given in
Chapter 15. If a cisternal image has been defined manually, the use
edit checkbox is automatically activated and the manually defined
cisternae will be used in subsequent processing steps. The edited
cisternal image is saved with the parameter file and can be edited
further or re-used any time the image is re-analysed. The Reset
button deletes the edited image from the current analysis and the
saved parameter file.

6.9 Enhancing the tubular elements

A number of options can be used to improve the relative contrast of
tubular ER elements prior to segmentation, using kernels designed
to pick-out ’ridge’ like features, typically applied over a range of
scales and angles (Fig. 6.9(c)).

The options include:

• ’PC, PCT and Feature Type’ : These use the phase-congruency
method developed by Peter Kovesi9,10 which provides contrast-

9 P. Kovesi. Image features from phase
congruency. Videre: Journal of Computer
Vision Research, 1:1–26, 1999

10 P. Kovesi. Phase congruency: A
low-level image invariant. Psychological
Research, 64:136–148., 2000a

invariant ridge detection over a range of scales and angles. The
MATLAB implementation11 provides a number of outputs, in-

11 P. D. Kovesi. MATLAB and Octave
functions for computer vision and
image processing, 2000b. Available
from: http://www.peterkovesi.com/
matlabfns/

http://www.peterkovesi.com/matlabfns/
http://www.peterkovesi.com/matlabfns/
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c

Figure 6.9: (c) Controls for tubule
enhancement

cluding the level of phase congruency (’PC’ option) as a measure
of the edge strength (Fig. 6.10 (a)), the Phase Congruency Tensor,
PCT that applies additional criteria to select ridge elements12,

12 B. Obara, V. Grau, and M. D. Fricker.
A bioimage informatics approach to
automatically extract complex fungal
networks. Bioinformatics, 28:2374–81,
2012

and also the Feature Type, calculated as the weighted mean phase
angle at every point in the image (Fig. 6.10 (b)). A value for the
feature type of pi/2 corresponds to a bright line, 0 corresponds
to a step and −pi/2 is a dark line. The feature type has proved
to be one of the most robust and reliable outputs for subsequent
segmentation13, as all ridges, irrespective of their original inten-

13 M.D. Fricker, D. Akita, L.L.M.
Heaton, N. Jones, B. Obara, and
T. Nakagaki. Automated analysis
of physarum network structure and
dynamics. J. Phys. D, 50:254005, 2017sity are identified with equal strength in the feature type image

(Fig. 6.10 (b)).

• ’Vesselness’ : This calls the Matlab implementation of the classic
Frangi14 ’Vesselness’ filter written by Marc Schrijver and Dirk-

14 A. F. Frangi, W. J. Niessen, K.L.
Vincken, and M.A. Viergever. Multiscale
vessel enhancement filtering, pages 130–
137. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1998

Jan Kroon and available from the Mathworks website. This gives
a strong response for bright features where the second-order
derivative of the image (Hessian) shows a strong anisotropy, but
fails at junctions between tubules (Fig. 6.10 (c)).

• ’Neuriteness’ : Applies the second-order anisotropic Gaussian
kernel originally proposed by Meijering et al. (2004)15, which

15 E. Meijering, M. Jacob, J. Sarria,
P. Steiner, H. Hirling, and M Unser.
Design and validation of a tool for
neurite tracing and analysis in fluores-
cence microscopy images. Cytometry, 58:
167 – 176, 2004

uses a slightly flattened second-order Gaussian kernel at a range
of scales and angles to give better discrimination of ridge-like
structures.

• ’SOAGK’ : Applies the multi-scale ridge detector developed by
Shui et al. (2012)16 and Lopez-Molina et al. (2015)17 that uses

16 P.-L. Shui and W.-C. Zhang. Noise-
robust edge detector combining
isotropic and anisotropic gaussian
kernels. Pattern Recognition, 45:806 –
820, 2012

17 C. Lopez-Molina, G. V. D. de Ulzur-
run, J. M. Baetens, J. Van den Bulcke,
and B. De Baets. Unsupervised
ridge detection using second order
anisotropic gaussian kernels. Signal
Processing, 116:55–67, 2015

second-order anisotropic Gaussian kernels (SOAGK). These can
be configured flexibly in terms of size, orientation and anisotropy.
This gives good ridge enhancement, but still retains the variation
in local intensity along the tubules that can make subsequent
segmentation more difficult (Fig. 6.10 (d)).

More details of the operation of each enhancement method can
be found in Chapter 2.

The GF check box applies a subsequent ’Guided’ filter to smooth
the result of the enhancement step. This can help to connect tubules
at junctions where several of the enhancement algorithms tend
to leave gaps (e.g. Fig. 6.10(c)). For subsequent processing the
enhanced image is normalised to the range [0 1].

In each case the number of scales is initially set by the # scales
parameter, determined from the ratio of FWHMmax/FWHMmin,
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(a) Phase congruency (b) Phase congruency ’Feature type’

(c) ’Vesselness’ filter (d) Second-order anisotropic Gaussian
kernel (SOAGK)

Figure 6.10: Comparison of dif-
ferent multi-scale approaches to
ridge enhancement. (a) the raw
output of the phase congruency
as an intensity-independent mea-
sure of ridge strength (Kovesi,
1999,2000a,b); (b) the ’Feature
Type’ output of the phase congru-
ency method. Note the strong edge
response irrespective of the origi-
nal tubule intensity; (c) the classic
Frangi et al. (1998) ’Vesselness’
filter based on the asymmetry of
the isotropic second-order image
gradient (note the ’gaps’ that
appear at the tubule junctions);
(d) the output of second-order
anisotropic Gaussian kernels
(SOAGK) according to Lopez-
Molina et al. (2015)with a minimum bound of 3. However, this can be over-ridden

using the adjacent textbox. This may be necessary to ensure that
larger features, such as cisternae, are also processed prior to seg-
mentation. The number of orientations is fixed at 6. In the case of
the anisotropic Lopez-Molina filters, the anisotropy is set at 1.3.

6.10 Editing hidden parameters

The most useful parameters are typically accessible directly from
the GUI interface. However, some of the algorithms take a number
of arguments that are not readily visible. These values can be
edited using the Edit button in the Param panel (Fig. 6.11), which
opens up a table showing the default setting and the current choice
for all the underlying parameters (Fig. 6.12). If the parameter
selected has a number of different options set by a dropdown menu,
these are displayed in the options box alongside. The value of the
parameter can be changed by typing the new value into the current
column, or selecting the option from the list box.

Param

load

edit

reset

Manual

save

Figure 6.11: Controls to load, edit
and save all the parameters

6.11 Skeletonization

The aim of the skeletonization step is to convert the enhanced
image to a one-pixel wide skeleton along the centre-line of the
tubule ridges, and is one area where up-sampling the image dur-
ing the rescale operation may be beneficial, but at the expense of
computational time. This is only an approximation to the true
centre-line due to the pixel discretisation errors. There are two main
approaches that can be used. The relevant controls are shown in Fig
6.13.
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Figure 6.12: Interface to edit any
hidden parameters

d

Figure 6.13: (d) Controls for
skeletonization

The first method is ’hysteresis thresholding’ (Fig. 6.14 (a,b)),
which uses intensity information and some degree of pixel con-
nectivity to provide an initial binary image that is then thinned to
give a single pixel skeleton. The second is ’watershed thresholding’
(Fig. 6.14 (c,d)) which follows connected ridges, irrespective of
the absolute intensity, and automatically generates a single pixel
skeleton.

Hysteresis thresholding starts with seed pixels above the upper
threshold, and then propagates the initial segmentation as long
as pixels remain above the lower threshold. The resulting binary
image is then thinned to give the single-pixel skeleton. The value of
the lower threshold is critical - too high and the network becomes
disconnected; too low and large blocks of the image are included
in the resultant binary image that may fuse separate tubules into a
single object. When this block is thinned, the skeleton does not map
onto the ridge centre-lines. In addition, as the thinning process is
not guided by the intensities in the enhanced image, the skeleton
does not necessarily converge on the expected pattern at junction
points (Fig. 6.14 (a,b)).

The watershed is better at segmenting the centre-line of the
ridges and can handle variations in intensity well. However, it
does not include any tubules that have a free end, and has a ten-
dency to over-segment regions with noise (e.g. Fig. 6.14 (c)). Over-
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(a) Overlay of pixel skeleton using
hysteresis thesholding

(b) Improvement in the pixel-skeleton
with inclusion of the h-minimum trans-
form

(c) Over-segmentation using an uncon-
strained watershed segmentation

(d) Pixel skeleton following a constrained
watershed segmentation

Figure 6.14: Comparison of differ-
ent approaches to extraction of the
pixel skeleton. (a) segmentation
using hysteresis thresholding.
Note that some adjacent regions
are not separated and the skele-
ton crosses the void between the
tubules (red arrows); (b) Improve-
ment in segmentation following
an h-minimum transform and
imposing a local minimum. The
adjacent tubules are now correctly
segmented; (c) segmentation us-
ing an unconstrained watershed.
This over-segments regions of
background, that still have almost
invisible ridge lines in the noise;
(d) suppression of watershed
over-segmentation using the h-
minimum transform and imposed
local minima. Note that the free
tubule (green arrow) is lost in the
watershed segmentation, and some
arms of the loops are lost (blue
arrow)

segmentation can be avoided using a boundary mask (with no fill),
and/or by including additional steps that suppress regions with
small intensity fluctuations, such as the h-minimum transform (Fig.
6.14 (d)).

These various options are selected from the drop down menu as
follows:

• ’hysteresis’ : applies hysteresis thresholding using a lower thresh-
old set by the adjacent textbox. The upper threshold used to
define the seed points is automatically set as lower threshold + 0.2
6.14 (b)).

• ’watershed’ : applies a watershed segmentation and then extracts
the watershed lines as the pixel skeleton. 6.14 (c)).

• ’hist + hmin’ : applies an h-minimum transform to smooth out
regions with low fluctuations in intensity, and then sets these
regions as local minima to ensure that the surrounding ridges
will be segmented individually and do not spread into the
basin, even if the absolute values are above the lower hysteresis
threshold 6.14 (b)).

• ’WS + hmin’ : uses the same h-minimum transform and imposes
local minima before the watershed operation, to prevent over-
segmentation of irrelevant ridges arising from noise within the
basins 6.14 (d)).

6.12 Modifying the skeleton to accommodate ER cisternae

The initial pixel skeleton will include both tubular and cisternal
regions, even though a ’skeleton’ is not necessarily a good repre-
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sentation of the cisternal morphology. If the cisternae have been
segmented earlier in the sequence, these regions are punched out
of the pixel skeleton so that they do not contribute to analysis of
the tubular elements. During the network extraction steps, de-
scribed in (Chapter 9), the cisternal regions are represented as a
set of linear connections radiating out from the center to connect
with the tubules incident on the boundary. This ensures the overall
connectivity of the network is retained.

6.13 Manual editing of the pixel skeleton

If the automated methods to delineate the pixel skeleton are still
unsatisfactory, the skeleton can be edited manually using the edit
button. This opens the binary editing program described in Chapter
15. The manually-edited skeleton is saved in the parameters file and
can be re-applied if the use edit checkbox is ticked.

6.14 Comparison with a manually-defined ground-truth

The extent that the automatically extracted pixel skeleton captures
the underlying structure of the ER is difficult to evaluate objectively.
At the simplest level, the skeleton can be overlaid on the initial
image for visual comparison (Fig. 6.16 (a,c)).

e

Figure 6.15: (e) Controls for
comparison with a manually-
defined ground truth

A more robust approach is to compare the extracted skeleton
with a manually-defined skeleton, representing a ground-truth
reference as judged by an expert human observer. The simplest
method is to manually digitise the network using a digitising tablet,
superimposed on the original image at the same scale. The digitised
ground-truth image is loaded using the Load GT button (Fig.
6.15(e)), and processed through the same resampling, cropping and
masking routines as the actual image, to ensure correct alignment.
The degree of overlap between the automatic and ground-truth
skeletons can be assessed visually in the merged image (Fig. 6.16

(d)).
Results can be quantified using the ROC (Receiver-Operating

Characteristic) button, by counting the number of matched points
(’True positives’, TPs), within some tolerance, typically set to be
half the tubule width, un-matched points (’false negatives’, FNs),
spurious points (’False positives’, FPs). True Negatives’ (TNs) are
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Figure 6.16: Comparison of
performance against a manual
ground-truth

(a) Skeleton (green) overlaid on original image (magenta).
Dotted cyan lines indicate the cisternae

(b) Output of ROC analysis. Dotted black lines indicate the
cisternae

(c) Zoomed region of skeleton (green)
overlaid on original image (magenta)

(d) Zoomed region of skeleton overlay (e) Merge between automatic skeleton
(green) and ground-truth (magenta)
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ignored as there are far too many TN background pixels. The
results can be colour-coded to aid visualisation, with TPs labelled in
green, FPs in blue and FNs in red (Fig. 6.16 (b,e)).

6.15 Optimising parameter settings using Precision-Recall anal-
ysis

It is also possible to use the ground-truth comparison as a means
to optimise the enhancement and segmentation parameters. In
essence, a small subset of the image is used as a test case to sys-
tematically vary each parameter in turn, in a sensitivity analysis.
Clicking the prototype button, prompts the user to select a region
of the image for comparison, and then opens a separate Parameter
selection window (Fig. 6.17).

Figure 6.17: GUI interface for
optimising parameter settings
using Precision-Recall analysis

The full set of parameters available for the enhancement and
skeletonisation methods are displayed in a table and a range of
values for a sub-set of parameters can be selected. The segmen-
tation is then run for a factorial combination of these parameters.
Results are presented in a grid format for two (user-selected) pa-
rameters at a time to aid visualisation. Quantitative estimates of
the best parameters use Receiver-Operating Characteristic (ROC) or
Precision-Recall (P-R) analysis to find the best trade-off in parame-
ter values that maximises the true hit rate (TPs), without increasing
FPs and FNs too much. Full details are given in Chapter 16.
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Estimation of ER velocity using optical flow

a

Figure 7.1: Optical flow controls

7.1 Introduction

The ER in plants is highly dynamic, with particularly rapid move-
ment along actin bundles in cytoplasmic streams in the sub-cortical
cytoplasm and trans-vacuolar strands. The first quantitative mea-
surements of ER movement used an ImageJ plugin called KbiFlow
(later repackaged as Lpx Flow)1. Typically 100 frames at 50ms

1 H. Ueda, E. Yokota, N. Kutsuna,
T. Shimada, K. Tamura, T. Shimmen,
S. Hasezawa, V. V. Dolja, and I. Hara-
Nishimura. Myosin-dependent
endoplasmic reticulum motility and
f-actin organization in plant cells. Proc
Natl Acad Sci U S A, 107:6894–9, 2010

intervals were analysed by initially removing static components
by subtraction of the time-averaged image, then measuring the
velocity using spatial-temporal correlation analysis. Additional
masking was used to remove noisy parts of the data, such as the
vacuoles. Using this approach, the maximum velocity recorded
in 2.54 × 2.54 µm of the cortical cytoplasm was 1.35 µm s−1 and
2.2 µm s−1 deeper within the cell. Stefano et al (2014)2 showed that

2 G. Stefano, L. Renna, and F. Brandizzi.
The endoplasmic reticulum exerts
control over organelle streaming
during cell expansion. J Cell Sci, 127:
947–53, 2014motility of the ER increased during cell expansion from around



48 analyzer

0.5 µm s−1 at 3 days after germination (DAG) to 1.5 µm s−1 at 12

DAG. Speeds in the thicker cytoplasmic strands running deeper
into the cell were significantly faster, the maximum velocities
around 4.2 µm s−1 in 7-day old Arabidopsis cotyledons3.

3 K. Ueda, H.and Tamura and I. Hara-
Nishimura. Functions of plant-specific
myosin xi: from intracellular motility
to plant postures. Curr. Op. Plant Biol.,
28:30–38, 2015

7.2 Approaches to velocity measurement

Horn and Schunck (1981) introduced a measurement of optical
flow4, based on local image gradients, coupled with the assumption 4 B.K.P. Horn and B.G. Schunck.

Determining optical flow. Artificial
intelligence, 17:185–203, 1981

that there are structures at a local scale within the image that trans-
late in x,y over short time periods such that the pixel intensities of
each object do not change between consecutive frames. This led to
the image gradient or optical flow constraint equation:

Ixu + Iyv + It = 0 (7.1)

Where Ix and Iy are spatial image gradients, It is the temporal
image gradient, u is the horizontal optical flow, and v is the vertical
optical flow.

To provide sufficient constraints to solve for u and v, it is also
assumed that movement of neighbouring pixels forming the object
will have similar velocity (i.e. flows are locally smooth) .

An alternative measure of optical flow that was originally for-
mulated as an image registration technique by Lucas and Kanade
(1981)5, also used intensity gradient information to direct the search 5 B. Lucas and T. Kanade. An iterative

image registration technique with an
application to stereo vision. In Proc. Int.
Joint Conf. Artificial Intelligence, pages
674–679, 1981

for the best match between two images. This scheme used a local
approximation of the image intensity gradient, and then used an
iterative least squares minimisation to find the displacement that
minimised the difference between the two curves. The solution
was further improved by including a weighting function favouring
regions that match the linear approximation well.

Rather than compute image gradients, Farnebäck6 used local 6 G. Farnebäck. Two-frame motion
estimation based on polynomial
expansion. Image analysis, pages
363–370, 2003

quadratic polynomial expansions to approximate local image
intensities over a given neighbourhood, with weightings based on
the strength of the signal and the distance from the central pixel.
The algorithm also included a coarse-to-fine pyramidal scale-space
iteration to improve the a priori estimate of the initial displacement
field, and also handle larger displacements.

7.3 Matlab implementations

These three different optical flow methods are provided within
the MATLAB Computer Vision Toolbox and called by the GUI,
along with a variant of the Lucas-Kanade algorithm that includes
a Difference-of-Gaussian (DoG) filtering step7. Each method has a 7 J.L. Barron, D.J. Fleet, and S.S. Beau-

chemin. Performance of optical flow
techniques. International Journal of
Computer Vision, 12:43–77, 1994

number of tuneable parameters that are automatically displayed or
greyed-out when the main method is selected.
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Figure 7.2: Controls to estimate
local velocity in time-series images
using the Farneback method

7.3.1 Farneback method

The Farneback method8 (Fig. 7.2) fits a polynomial expansion to 8 G. Farnebäck. Two-frame motion
estimation based on polynomial
expansion. Image analysis, pages
363–370, 2003

the neighbourhood around each pixel (given by the nhood size),
and calculates the displacement from the quadratic coefficients,
smoothed by a Gaussian filter (given by filter size). Typically three
pyramid levels, with a scale of 0.5 gives sampling over four times the
initial neighbourhood size to capture fast-moving objects.

7.3.2 Horn-Schunck method

Optical flow
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Optical flow

1smoot

10iteratio

0V diff

0
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quiver

Horn-Sch...

5gap

6max

0min g

Figure 7.3: Controls to estimate
local velocity in time-series images
using the Horn-Schunck method

The Horn-Schunck method9 (Fig. 7.3) calculates the local image 9 B.K.P. Horn and B.G. Schunck.
Determining optical flow. Artificial
intelligence, 17:185–203, 1981

gradients in x, y using a Sobel edge filter and a simple two-frame
differencing for t. The solution is further constrained by a global
smoothness term. Increasing the smoothness compensates for faster
motion, whilst increasing the number of iterations, or decreasing the
minimum velocity difference (V diff ) helps to track slow moving
regions.

7.3.3 Lucas-Kanade method

Optical flow
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Optical flow
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0

0

0
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0min g

Figure 7.4: Controls to estimate
local velocity in time-series images
using the Lucs-Kanade method

The Lucas-Kanade method10 (Fig. 7.4) calculates local image 10 B. Lucas and T. Kanade. An iterative
image registration technique with an
application to stereo vision. In Proc. Int.
Joint Conf. Artificial Intelligence, pages
674–679, 1981

gradients in x, y and t using a set of fixed kernels with additional
smoothing, before solving for u and v. Eigenvalues below the noise
threshold are treated as zero velocity.

7.3.4 Lucas-Kanade Difference of Gaussians (DoG) method

The Lucas-Kanade Difference of Gaussians (DoG) method11 (Fig. 11 J.L. Barron, D.J. Fleet, and S.S.
Beauchemin. Performance of optical
flow techniques. International Journal of
Computer Vision, 12:43–77, 1994

7.5) applies Gaussian smoothing in x,y (set by sigma1) and t (set by
frames), before calculating the image derivatives. The derivatives are
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Figure 7.5: Controls to estimate
local velocity in time-series images
using the Lucas-Kanade DoG
method

smoothed using a Gaussian filter (sigma2), before solving for u and
v. Eigenvalues below the noise threshold are treated as zero velocity.

7.4 Quantitative results for Optical Flow

The Farneback algorithm, operating over three or four pyramid
scales, appears to give the most robust results for plant ER and
produces a a colour-coded representation of the speed of move-
ment (Fig. 7.6). This is probably because it is the only algorithm
implemented here that operates over several pyramid scales, and is
therefore able to capture the different rates of movement observed,
particularly for fast streaming.

Kimura et al. (2017)12 report similar advantages using the

12 K. Kimura, A. Mamane, T. Sasaki,
K. Sato, J. Takagi, R. Niwayama,
Y. Hufnagel, L.and Shimamoto, J.-F.
Joanny, S. Uchida, and A. Kimura.
Endoplasmic-reticulum-mediated
microtubule alignment governs
cytoplasmic streaming. Nat Cell Biol, 19:
399–406, 2017

Farneback algorithm to analyse organelle movement in Caenorhab-
ditis elegans embryos. The other algorithms capture movement
of small bulges along the tubules and cisternae, but tend to miss
larger-scale movements.

The vectors describing the local flow can also be superimposed
on the velocity image (or indeed any image displayed) using the
quiver checkbox in the Optical flow panel (Fig. 7.6(a)). The spacing
of the vectors is controlled by the spacing textbox, which also
affects the relative scaling of the quiver magnitude. The Colour of
the quiver arrows can also be selected from the dropdown menu.

(a) Colour-coded optical flow (b) Quiver plot of velocity
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Figure 7.6: Colour-coded repre-
sentation and quiver plot of the
local ER speed determined by the
Farneback method

The colour-coded image provides some indication of the speed
of movement by reference to the calibrated colour-bar, with the
scale set between min and max. Full quantitative measurements
are not calculated until the tubular network and cisternae have
been extracted (See Chapter 9). Once this step is complete, results
for speed and direction are expressed as maximum or average
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values for each tubule and cisterna, and can be displayed as an
colour-coded overlay on the image (Fig. 7.6(b,c)).

(a) local velocity
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(b) Average tubule speed
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Figure 7.7: Graphical overlay of
average tubule speed and direction
determined by the Farneback
method

Results can also be plotted as histograms (Fig. 7.8(a)) for individ-
ual frames or the whole image series using the plot controls (Fig.
7.8(b)), and distributions Fit using a variety of probability distribu-
tions, selected from the adjacent dropdown menu. The all option
automatically find the best fit to the data, reports the distribution
selected and gives the distribution parameters in the table below.

(a) distribution of tubule speeds

Y

X

microns

Speed

Original

tubules 1D hist

1

1

hold

Clear

Save

parula

mu sigma re... p

-0.69200.4620 0 0 0 0 0.9360

Fit Log-Logisticall

none

none + E

(b) plot controls

Figure 7.8: Graphical representa-
tion of average tubule speeds7.5 Visualisation of the ER speed as a movie

Changes in velocity (or indeed animation of any image type in a
time-series) can be achieved within the network interface using the
movie controls in the display panel (Fig. 7.9).

1

Figure 7.9: Controls to animate
time-series images within the
network analysis GUI
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Alternatively the Viewer button opens a separate GUI that has
more options to control display of the movie, including output
to a variety of video formats (Fig. 7.10). The Viewer program is
described in more detail in Chapter 14.

Figure 7.10: The movie viewer
GUI
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Persistency mapping

a

Figure 8.1: Persistency analysis
controls

8.1 Introduction

Whilst elements of the plant ER network are highly dynamic, there
are also components that remain static over a long period of time1.

1 L. R. Griffing, C. Lin, C. Perico,
R. R. White, and I. Sparkes. Plant ER
geometry and dynamics: biophysical
and cytoskeletal control during growth
and biotic response. Protoplasma, 254:
43–56, 2017

The static elements include regions where the ER is tethered to the
plasma membrane at ER-plasma membrane contact sites (EPCS)2,

2 I. Sparkes, J. Runions, C. Hawes, and
L. Griffing. Movement and remodeling
of the endoplasmic reticulum in
nondividing cells of tobacco leaves. The
Plant Cell, 21:3937–3949, 2009b

which act as fixed anchors to stabilise the polygonal network3, as

3 I. Sparkes, T. Ketelaar, N.C.A. De Rui-
jter, and C. Hawes. Grab a Golgi: laser
trapping of Golgi bodies reveals in
vivo interactions with the endoplasmic
reticulum. Traffic, 10:567–571, 2009a

well as relatively immobile tubules and cisternae. Persistency map-
ping was developed to highlight these features, and has employed
a variety of image processing steps to identify persistent, immobile
structures.

At present there is no agreed definition of the duration an object
has to remain in position to be regarded as a persistent feature,
but current practice has adopted a period of 5-10s for tubules and
cisternae, or longer for persistent nodes. Thus, in the initial pa-
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per (Sparkes et al. 2009) images separated by 8s intervals from a
50-frame time-course lasting 80s were subtracted, binarised, sepa-
rated into tubules and cisternae by opening and closing operations,
and then summed over the time course to give persistency maps.
Summary statistics were calculated by normalising to the total
membrane area present in the time-course. In subsequent analyses
that focussed more on the biophysics of the polygonal network,
persistent nodes were identified as local maxima after averaging
over the complete time course and smoothing in (x,y) with a Gaus-
sian filter, whilst the remainder of the ER network was thresholded
and thinned to give a single pixel-wide skeleton4, or segmented

4 C. P. Lin, Y. W. Zhang, I. Sparkes, and
P. Ashwin. Structure and dynamics of
er: minimal networks and biophysical
constraints. Biophysical Journal, 107:
763–772, 2014

manually5.

5 C. Lin, R.R. White, I. Sparkes, and
P. Ashwin. Modeling endoplasmic
reticulum network maintenance in a
plant cell. Biophysical Journal, 113:214 –
222, 2017

8.2 Implementation of persistency analysis

The Persistency control panel provides a number of different meth-
ods to find the persistent nodes and calculate persistency maps.

Maps of persistent tubules and cisternae can be calculated from
either the background-subtracted intensity images or the segmented
skeleton and cisternal images, selected using the drop-down menu.

• sum binary : dilates the pixel skeleton and the binary cisternal
images by the tolerance (in pixels), and then calculates a moving
sum over the lag period to give separate persistency maps for
tubules and cisternae. The result is normalised by the lag period.
A value of 1 means the pixel was occupied throughout the lag
period.

Figure 8.2: Controls to measure
persistency of tubules and cister-
nae

• diff binary : dilates the pixel skeleton and the binary cisternal
images by the tolerance and then determines whether a pixel
was present at the start and end of the lag period using an AND
operation. The result is normalised by the lag period. A value of
1 means the pixel was still occupied at the end of the lag period.

• all binary : follows the same procedure as sum binary except
that the dilated skeleton and cisternal images are combined
before processing to give a single persistency map. This ensures
that persistent nodes that may remain over time as tubules and
cisternae move are still identified.

• sum intensity : Calculates a moving sum over the lag period for
the background-subtracted intensity time-series. An automated
threshold is applied to segment the network from the time-
averaged images. Persistent tubules are separated using closing
and thinning, and persistent cisternae by opening. The binary
skeleton and cisternal images from each time point are used to
mask the results.

• diff intensity : Calculates a difference image for the first and
last images of the lag period from the background-subtracted
intensity time-series, and masks the result with the binary AND
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image of the each pair of time-points. An automated threshold is
applied to segment the network from the difference imaging, and
then persistent tubules are separated using closing and thinning,
and persistent cisternae by opening. The binary skeleton and
cisternal images are used to mask the results.

The overall tubule persistency or cisternal persistency is calcu-
lated as the average over time, and can be visualised as a merged
image between the map of persistent tubules (green) and persistent
cisternae (magenta) (Fig. 8.3). Alternatively, results for each lag
period can be animated using the play button in the Display.

Figure 8.3: Persistency map of
tubules (green) and cisternae
(magenta)

8.3 Identification of persistent nodes

Persistent nodes may remain in place for extended periods even as
tubules and cisternae flow over them. They are calculated in five
steps from the background-subtracted time-series using a slightly
modified version of Lin et al (2014)6 : 6 C. P. Lin, Y. W. Zhang, I. Sparkes, and

P. Ashwin. Structure and dynamics of
er: minimal networks and biophysical
constraints. Biophysical Journal, 107:
763–772, 2014

• Filter in time using a 1-D median (rather than an average filter in
time)

• Filter in space using Gaussian filter in (x,y) with sigma set to 0.1
µm

• Normalise the filtered image

• Set values below a threshold in the normalised image, typically
around 0.3 (set by the threshold textbox), to zero. Persistent
nodes tend to be brighter, so this provides some selection for
more prominent nodes.

• Find local maxima in the masked image and overlay these on the
image.

The persistent nodes are dilated by the tolerance to aid visuali-
saiton and overlaid on any one of the other ER persistency maps
(magenta). Alternatively, the persistency image shows the persistent
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nodes overlaid on the green/magenta merge of tubule persistency
and cisternal persistency, along with the original skeleton in blue
(Fig. 8.4). This approach finds persistent nodes whether they are
part of the tubules, cisternae or transition between the two over the
time course.

Figure 8.4: Combined persistency
map of tubules and cisternae
(green), overlaid with persistent
nodes (magenta)
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Extraction of a weighted network

a

Figure 9.1: Controls to measure
the tubule widths and extract a
weighted network (a) and below9.1 Estimation of the tubule diameter

Once the pixel-skeleton has been segmented satisfactorily, the next
step in network extraction is to estimate the tubule width, before
converting the pixel skeleton to a weighted graph representation.
In a multi-channel image, one or more channels can be selected
for analysis using the R,G,B checkboxes in the Network Extract
panel (Fig. 9.1). The target image to base the width measurements
can be selected from the adjacent dropdown menu, and would
typically be the background-subtracted image, or the filtered image
for additional noise-reduction.

Unfortunately, the expected ER tubule diameter (40 nm) is below
the theoretical resolution of a confocal microscope, and at the res-
olution limit of current live-cell super-resolution techniques, such
as STED1, so direct physical estimates of the width are challenging.

1 B. Hein, K. I. Willig, and S. W. Hell.
Stimulated emission depletion (sted)
nanoscopy of a fluorescent protein-
labeled organelle inside a living cell.
PNAS, 105:14271–14276, 2008
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The initial confocal image and the methods described here typically
return a value of the ’true’ width convolved with the point spread
function (psf) of the microscope. In addition, even sampling with a
Nyquist pixel spacing based on the psf, can lead to significant digiti-
sation errors during processing, as the size of the tubules is only a
few pixels wide. Up-sampling the image (as part of the resampling
process) can help to reduce these digitisation errors.

A number of different approaches are available that all provide
some information on the tubule diameter including:

• ’Distance’ : This estimates the local FWHM of the tubule at each
pixel in the skeleton using the original tubule intensity. The
peak intensity is estimated from the background-subtracted
image, sampled for each pixel in the skeleton, whilst the distance
is estimated from the distance transform of the pixel skeleton.
The 50% threshold is estimated from where the pixel intensity
falls below half the peak intensity, assuming a local background
of zero. At the moment there is no interpolation, so there is
likely to be considerable discretisation error with this approach,
although this will be partially compensated by the averaging that
takes place later along each tubule during graph conversion to
give the mean width of each tubule.

• ’Maximum-gradient granulometry’ : The intensity image is subject
to a series of image openings (erosion followed by dilation) that
progressively remove structures as the size of the opening ker-
nel exceeds the size of the underlying object. This results in an
intermediate (x,y,s) image, where s increases with the size of the
disk-shaped kernel. The intensity of each pixel in the skeleton
initially decreases slowly with s as the kernel samples more of
the object, but then reduces dramatically once the boundary
of the object is reached, and the kernel only samples the back-
ground. The transition point for any pixel is determined from
the maximum (negative) gradient of the granulometry curve.
This approach constrains the width to integer pixels values, and
also suffers from the digital approximation of small kernels to a
true disk shaped kernel.

• ’Integrated intensity granulometry’ : This approach follows the
same methodology as the maximum-gradient granulometry
method, but rather than extract a specific size threshold, the
integrated intensity under the granulometry curve is calculated.
This provides a more nuanced interrogation of the local image
intensity, but cannot be directly related to the physical tubule
width without additional assumptions about the relationship
between fluorescence intensity and sampled volume. This ap-
proach does help with estimation of relative tubule widths, even
if they are sub-resolution objects, provided it is assumed that the
fluorescent probe is evenly distributed throughout the ER, and
the ER is within the sampling volume of the confocal defined by
the psf.
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This principle behind the integrated intensity measurements can
be illustrated empirically using a simulated model of ER tubules
with different widths (Fig. 9.2A,B) that are convolved with the ex-
citation and emission psfs, modelled as anisotropic 3-D Gaussian2

2 B. Zhang, J. Zerubia, and J.-C. (2007).
Olivo-Marin. Gaussian approximations
of fluorescence microscope point-
spread function models. Applied Optics,
46:1819–1829, 2007

blurring functions (Fig. 9.2C,D).

Figure 9.2: Estimation of sub-
resolution tubule widths. A set
of ER tubules with increasing
width were simulated as cylin-
ders and viewed as an average
(x,y) projection (A,C) and a sin-
gle (x,z) section (B,D) before
(A,B) and after (C,D) blurring
with a simulated anisotropic 3-D
Gaussian excitation and emission
point spread function (FWHM
0.14µm × 0.14µm × 0.42µm
in x,y and z, respectively). The
simulated result for scanning a
single confocal section is illus-
trated in (E). The intensity profile
across the mid-section of the orig-
inal tubules and after blurring
is shown in (F). The reduction
in intensity for sub-resolution
tubules is apparent. (G) shows the
performance of the three different
estimates of tubule width. The
50% distance measure (o) and the
maximum gradient granulometry
(square) perform well above about
twice the psf, but return a value
close to the psf for sub-resolution
objects. The integrated intensity
measure (x) gives a near linear
response throughout the range
of tubule widths examined. Sim-
ilar result are obtained using a
faster granulometry method that
includes decomposition of the
circular structuring element into
linear approximations, along with
an empirical correction of -1 pixel
to compensate for oversampling
(H).

The performance of the three different width estimators can
be assessed by analysis of a single confocal plane to represent an
(x,y) image plane (Fig. 9.2E). All measures perform well above
about twice the theoretical lateral FWHM of the psf (0.14µm for the
Zeiss AiryScan), but the 50% distance measure and the maximum-
gradient granulometry measure both converge to a fixed value
close to the psf for sub-resolution objects as expected (Fig. 9.2G).
By contrast, the integrated intensity measure provides near linear
performance even with sub-resolution objects (Fig. 9.2G). An addi-
tional option is available to increase the speed of the granulometry
by using decomposition of the disk-shaped structuring element into
a set of linear elements. This requires an empirically determined
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correction of -1 pixel to the estimated width to compensate for the
over-sampling with essentially square kernel approximations (Fig.
9.2H).

Whilst this suggests that the integrated intensity measurement
is linear with the size of the objects, it still requires knowledge of a
calibration factor to relate intensity to radius. To compare with the
other approaches to width measurement that provide an output in
pixels, we need to estimate the fluorescence from a known volume
of ER.

Figure 9.3: Controls for width
calbration

Perhaps the simplest measure is the average intensity for a
cisternal sheet, which represents the signal expected for a structure
completely filling the (x,y) plane of the estimated psf, but with
a similar thickness to the tubules. This can be samped from the
background corrected and filtered image using the Sample button
(Fig. 9.3),which also updates the value in the adjacent textbox.

Figure 9.4: Approximate volumes,
and hence relative fluorescence
intensity, sampled by the psf
across a cisterna and a tubule.
The correction factor is based
on measurement of the sheet
intensity (Is) an estimate of
the sheet thickness (Ts), and an
estimate of the lateral resolution of
the point spread funtion (ps fxy)

The corresponding volume sampled is calculated using an
estimate of the FWHMxy of the psf, entered in the psf textbox, and
an estimate of the sheet thickness, entered in the sheet textbox.
For a typical image collected without saturation, the average sheet
intensity is around 0.3-0.5, whilst FWHMxy of the AiryScan psf
is taken as 0.14 µm, and the sheet thickness (Ts) as 0.04 µm. This
gives a typical correction from intensity to microns of 0.1-0.15 ×

√
It,

where It is the integrated intensity of the tube. (Fig. 9.4).
The width estimate for each tubule is calculated by clicking the

width button and is presented as a pseudo-colour coded version of
the pixel skeleton (Fig. 9.1) that is scaled from the minimum width
in blue to the maximum in yellow (depending on the look-up table
chosen in the display panel). The colour-bar is updated to display
the estimated width in microns.
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Figure 9.5: Pseudo-colour coded
representation of the tubule width
(in microns). The cisternal regions
are shown as a dotted yellow
outline

9.2 Conversion of the pixel skeleton to a graph representation

The Network button will trigger all the subsequent steps required
to convert the pixel-skeleton to a weighted graph representation.
For the tubular regions of the skeleton, the nodes are defined at the
junctions between the ER tubules, or the end-points of free tubules,
which are connected by straight edges that preserve the topology of
the network (Fig. 9.7). Any loops connecting the same two nodes,
will be split to create an extra node with degree 2 in the longer arm
(Fig. 9.6). This ensures that metrics that are critically dependent on
parameters such as resistance to flow are correctly assigned to each
edge separately, rather than to an average of the two edges. The
cisternae are represented as a super-node placed at the centroid and
connected to all the tubules incident on the boundary.

Figure 9.6: Resolution of loops
into two arms by inserting an
additional k=2 node

Figure 9.7: Conversion of the
weighted pixel skeleton to a
weighted graph. Junctions and
free ends are represented as nodes
linked by edges that have a vector
of properties associated with
them including width and length.
Cisternae are represented as a
’super-node’ connected to all the
incident tubules on the boundary

A number of metrics are associated with each edge including
the Euclidean length of the underlying pixel skeleton, the average
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width, and the average width of the tubule excluding the nodes
(termed ’center width’), which provides a more accurate measure of
the tubule diameter itself (Fig. 9.8). The precise number of pixels to
ignore in estimation of the width is currently set to be the average
width of the edges incident at the node, unless the node has a
degree of two or less and is not connected to a cisternal sheet.

Figure 9.8: Center-weighting
of the tubule width ignores the
contribution of pixels near the
nodes

If the graph checkbox is ticked in the display control panel (Fig.
9.9(a)), the metric to be displayed is selected from a drop-down
menu (Fig. 9.9(b)), and overlaid on the image as a graph, with
the nodes at the junctions connected by straight edges that match
the colour-coding of the skeleton (Fig. 9.9(d)) or a pixel skeleton
(also shown in Fig. 9.7). Various metrics for the nodes can also be
displayed as colour-coded points using the (Fig. 9.9(c)) drop-down
menu. The actual values for the edges and nodes can be shown
using the E and N checkboxes, respectively, the scaling can be
changed to logarithmic with the log checkbox (Fig. 9.9(e)).

Figure 9.9: Controls that affect
display of the weighed graph

a

b

c

d e f

The colorbar is updated to reflect the calibrated metric (Fig. 9.10),
and the color-map can be changed using the colormap drop-down
menu (Fig. 9.9(f))

Figure 9.10: The calibrated width
colorbar

If any ER cisternae have been identified, they are represented
as a ’super-node’ positioned at the intensity-weighted centroid
position that is connected to all the tubules that are incident on the
cisternal boundary. Each of these tubes is given an arbitrary value
equal to the average width value. The boundary of the cisternae can
be highlighted using the perim checkbox (Fig. 9.9(e)).

The graph overlay can be removed by clicking the Clear button.

9.3 Graphical output

Metrics for the tubules and nodes can be plotted in pairwise combi-
nations (Fig. 9.3(a)), individually as a histogram (Fig. 9.3(c)), or as
an average value over time (Fig. 9.3(d)), depending on the settings
in the plot controls panel (Fig. 9.11).

The first dropdown menu (Fig. 9.11(a)) selects the object to plot
(tubules, nodes, etc.), whilst the second (Fig. 9.11(b)) selects between
a scatter, 1D histogram, 2D histogram or time plot in pixels or microns
selected by Fig. 9.11(c). The metric to be plotted on each axis is
selected from the Y and X dropdown menus (Fig. 9.11(d,e)), for a
specific channel (default as channel 1). The data can be transformed
using the adjacent dropdown menu (log, log10, inverse, sqrt, exp,
arcsin, logit). In the case of log transforms, the +E checkbox as half
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a b c

d

e

f Figure 9.11: Plot controls for
graphical output for the network
metrics

the minimum value to any zero entries if required. In addition, the
scatter plot data can by fit with a variety of functions (polynomial up
to order 3, single or double exponential, and single or double power)
using the Fit button (Fig. 9.3(c)), with the coefficients returned in
the table, along with an adjusted r2. Multiple plots can be overlaid
using the hold checkbox. In the case of histograms for time-series,
the colour is controlled by the look-up table chosen. Plots can be
saved as images or cleared using the Save plot and Clear buttons,
respectively.

(a) Scatter plot of tubule width against
intensity

(b) Data fit with a linear regression

(c) Histogram of tubule widths (d) Average width plotted against time
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Analysis of the ER tubule structure

The Analysis button in the Tubule analysis panel (Fig. 10.1(a))
calculates a number of graph-theoretic metrics for the network of
tubules, excluding the cisternal nodes and cisternal perimeter, for
each time-point, that are displayed in the Results panel(Fig. 10.2)

a Figure 10.1: Controls for graph
analysis of the tubular network

In addition to the number of nodes and edges and their length
and width, the Global and Root efficiency is calculated1, as the

1 V. Latora and M. Marchiori. Efficient
behavior of small-world networks. Phys.
Rev. Lett., 87:198701, 2001

sum of the inverse of shortest paths between all nodes, or the first
cisternal node, respectively.
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Figure 10.2: Graph-theoretic
measures of the tubular networkk

Metric Explanatory notes

G The number of sub-graphs in the network. This
is typically one as only the largest connected
component is selected

nodes The number of nodes (excluding cisternal nodes)
links The number of edges (excluding cisternal edges)
total length The total length of the network tubules (mm)
mean length The average length of the tubules (µm)
median length The median length of the tubules (µm)
mean width The average width of the tubules (µm)
median width The median width of the tubules (µm)
volume The total volume of the network (mm3)
k The average node degree
G efficiency The global efficiency of the network
R efficiency The root efficiency of the network calculated to the

first cisternal node
cyclomatic no. The cyclomatic number
alpha The alpha coefficient or meshedness
beta The beta coefficient
gamma The gamma coefficient
diameter The longest shortest path through the network

Table 10.1: Morphological metrics
calculated for each ER tubule

The global efficiency2, defined as the mean reciprocal of the 2 V. Latora and M. Marchiori. Efficient
behavior of small-world networks. Phys.
Rev. Lett., 87:198701, 2001

shortest paths, weighted by resistance, with the reciprocal for
disconnected nodes defined as zero (Equation 10.1). The root
efficiency (Eroot) is calculated in a similar manner but just from the
exit point to all other nodes.

Eglobal =
1

N(N − 1) ∑
i 6=j∈G

1
dij

(10.1)

The cyclomatic number, alpha, beta and gamma metrics derive
from transportation geography for planar networks. The cyclomatic
number gives a measure of the complexity of the network and is
calculated as:

cyclomatic number = u = e− v + p (10.2)

Where e is the number of edges, v is the number of vertices or
nodes, and p is the number of components (typically set to 1 here
as only the largest connected component is considered). The alpha
coefficient3 or meshedness4 estimates the fraction of cycles present

3 P Haggett and RJ Chorley. Network
Analysis in Geography (pp 74-76) Edward
Arnold Publishers Ltd. London, 1969

4 J. Buhl, J. Gautrais, R.V Solé, P. Kuntz,
J.-L. Valverde, S.and Deneubourg, and
G. Theraulaz. Efficiency and robustness
in ant networks of galleries. Eu. Phys. J.
B, 42:123–129, 2004

compared to a fully connected planar network, and is calculated as:

alpha coefficient = α =
e− v + p

2v− 5
(10.3)

The beta coefficient measures the level of connectivity in a graph
based solely on the number of edges and vertices. Simple branching
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networks with no loops have β value of less than one, for a single
loop β = 1, whilst β > 1 for more complex networks with multiple
loops.

beta coefficient = β =
e
v

(10.4)

The gamma coefficient represents the number of links present
compared to the maximum number expected for a planar graph
with the same number of vertices. Gamma ranges from 0 to 1 for a
fully connected network.

gamma coefficient = γ =
e

3(v− 2)
(10.5)

In addition, if the BC checkbox is ticked, the Betweenness Cen-
trality of the edges and nodes is calculated, using the metric in the
adjacent dropdown menu, drawn from Length, Width, Area, Volume
or Resistance to weight the shortest path calculation.

Figure 10.3: Notional impor-
tance of edges in the network,
judged from their log Betweenness
Centrality. Connections to the
cisternal nodes are included in the
calculation to ensure the network
is fully connected

Betweenness centrality may provide some indication of likely
routes of movement within the central part of the network. How-
ever, as the network is incomplete because typically it only contains
a 2-D subset of a 3-D network, shortest-path measures on the net-
work may be difficult to relate to a specific biological function.

10.1 Node metrics

A variety of metrics are also calculated for each node (Table 10.2)
The node degree is one for tubules with a free end, but typically

3 for all other nodes, excluding the cisternal nodes. Classifying the
three main tubules as major (Maj), middle (Mid) and minor (Min)
allows calculation of additional metrics such as the ratio of incident
tubule widths, the mean orientation, and particularly the branch
angles. For the latter two measures, the tubule is represented as
a linear vector from the node to the mid-point of the tubule. This
ensures that a reasonable length is considered when estimating the
direction, but will incur errors for long tubules with high tortuosity.
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Table 10.2: Metrics calculated for
each node

Metric Explanatory notes

node degree The number of tubules connected to each node, excluding
cisternal nodes

total width The sum of the tubule widths incident at each node
mean width The average of the tubule widths incident at each node
intensity The original intensity at the node
persistency Node persistency
speed Node speed
direction Node direction
distance The distance from the reference point
Maj, Mid and Min The widths of the three main tubules incident at the node.

Only one value is given for a terminal node, whilst few node
have a degree greater than three

Min_Maj, Mid_Maj and Min_Mid The ratio of the tubule widths for the three main incident
tubules

Omaj, Omid and Omin The orientation of the three main incident tubules, determined
as a linear segment between the node and the midpoint of the
tubule

Omin_Omaj, Omid_Omaj and
Omin_Omid

Branch angles between the three main incident tubules, deter-
mined from a linear segment from the node to the midpoint of
each tubule

10.2 Tubule morphology

Under some conditions or in certain genetic backgrounds, such as
over-expression of reticulons5, the ER tubules show fluctuations in

5 E. Breeze, N. Dzimitrowicz, V. Kriech-
baumer, R. Brooks, S.W. Botchway,
J.P. Brady, C. Hawes, A.M. Dixon, J.R.
Schnell, M.D. Fricker, and L. Frigerio.
A c-terminal amphipathic helix is nec-
essary for the in vivo tubule-shaping
function of a plant reticulon. PNAS,
113:10902–10907, 2016

diameter along their length. The Morphology button can be used to
characterise the number, size and distribution of these bulges and
constrictions (Fig. 10.4(b)).

b

Figure 10.4: (b) Controls to
analyse morphological bulges and
constrictions along individual
tubules

The pixel intensities are scanned along the length of each tubule
starting at the nodes (which are set to 1), and the position and
intensity recorded for each peak (bulge) that is greater than the
minimum peak height set by the height textbox, and the minimum
peak prominence set by the prom. textbox (Fig. 10.5). The promi-
nence is the local height of a peak compared to its neighbours,
rather than the baseline given by the peak height alone.

An additional minimum separation condition is imposed to pre-
vent adjacent noisy pixels from being considered as separate peaks,
and to exclude the original nodes from the analysis. This separa-



analysis of the er tubule structure 69

(a) detection of intensity peaks (bulges)
along an ER tubule

(b) detection of intensity troughs (constric-
tions) along an inverted ER profile

Figure 10.5: Tubule morphology:
The intensity profile along each
ER tubule is scanned to detect
peaks (bulges) above a minimum
intensity that are also a minimum
height above their neighbours. In
addition peaks have to be greater
than a minimum separation from
each other and the nodes (set
to one). (b) The position of the
’constrictions’ between the peaks
are determined from a scan of the
inverted intensity profiletion defaults to FWHMmin. A similar scan is used on the inverted

tubule profile to detect the ’troughs’ or constrictions. Once the lo-
cation of the peaks and troughs has been determined, the width
at each peak and trough is extracted, along with the separation
between the peaks.

The position and intensity value ot the bulges and constrictions
are overlaid on the currently displayed image with right justified
labels, bulges in magenta and troughs in blue for channel 1 (Fig.
10.6).

Figure 10.6: Measurement of
bulges and constrictions in the
ER network. The estimated width
for every pixel in each edge is
scanned to detect local peaks, cor-
responding to bulges (magenta)
and troughs, corresponding to
constrictions (blue), which are an-
notated with the estimate tubule
width at that point for channel 1.
Bulges and constrictions are also
detected for channel 2, and coded
as green and yellow, respectively

If a second channel has also been analysed, bulges and constric-
tions for this one are plotted with left justified labels, bulges in
green and troughs in yellow.

The metric plotted can be selected using the morph dropdown
menu (Fig. 10.7), from a selection that includes Width, Covariance,
Ratio and Value, for the channel selected. The Covariance and Ratio
values are only relevant if two channels have been analysed.

a

Figure 10.7: Controls to display
the results of the tubule morphol-
ogy analysis
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10.3 Tubule morphology traces

The Trace button provides an alternative visual representation of
the tubule morphology if the adjacent dropdown menu is set to all.

c

Figure 10.8: (c) Trace controls to
extract profiles from all tubules or
a selected tubule

This extracts the intensity profile for each channel for each
tubule and orders them as successive left-justified lines. The resul-
tant image is shown in separate image window (Fig. 10.9).

(a) Dual-channel image (b) Stacked profile image

(c) Selected trace (d) Selected trace plot

Figure 10.9: (a) Dual-channel
image of GFP-HDEL (green)
and reticulon (red). (b) aligned
intensity profiles for each tubule,
ordered by tubule length. (C)
selected tubule, with the bulges
and constrictions labelled. (D)
profiles along the selected tubule

If the tubule thickness is the same in each channel, the overall
colour of the line will be yellow, otherwise peaks and troughs are
visible as bands of green and red colour.

Results for a specific tubule can be obtained by setting the drop-
down menu to selected, and then using the cursor to pick the start
and end nodes from the graph displayed. The profile along the
shortest path between the selected nodes is extracted and analysed
for the peaks and troughs.
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10.4 Summary of tubule results

The summary results for all the tubules are shown in the Results
Summary panel (Fig. 10.10 (a)), or plotted as histograms (Fig. 10.10

(b)).

(a) Summary results for the tubule
morphology measurements

(b) Histogram plots for the peak and
trough intensities

Figure 10.10: Tubule morphol-
ogy results : (a) Average values
for tubule morphology metrics
are shown for each channel. (b)
histogram display of the distri-
bution of bulge and constriction
intensities

10.5 Distance measurements from a reference point

In some instance it is useful to map the morphology and dynamic
of the ER against a fixed spatial reference point, such as the site of a
fungal hyphal penetration peg, a local region of photobleaching, or
a localised wounding response. d

Figure 10.11: (d) Measurement of
distance from a reference point

The Set button (Fig. 10.10 (c)) allows the user to manually define
a reference point on the image, which is saved with the experiment.
The manual reference point can be removed using the Clear button,
in which case it defaults to the center of the image. If the internal
checkbox is ticked, clicking the Distance button will calculate the
distance constrained by the shortest path through the network,
otherwise, the euclidean distance will be calculated directly to the
reference point.

Figure 10.12: Euclidean distance
measure from a manually-defined
reference point
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10.6 Local region measurements

The Region button will allocated any signal intensity within a
maximum distance in pixels (set by max) from the tubules and
cisternae to the nearest element of the skeleton (Fig. 10.13). This
feature is being developed to provide a distance-dependent spatial
co-localisation analysis of other labelled proteins or organelles near
the ER.

e

Figure 10.13: (e) Measurement
of intensities in the region of the
network

Figure 10.14: Merged image
showing the local regions adjacent
to each tubule or cisterna. Signal
from these regions is re-allocated
to the nearest element

10.7 Data output

Results are displayed in tabular form in the Results panel (Fig.
10.7).

The target dropdown menu is used to select which results are
shown from tubules, nodes, cisternae, polygons, morphology, perimeter,
trace or textitgraph, whilst the grouping dropdown menu can be
used to aggregate the data by just the current image, or by channel,
section, frame or all. Normally results are summarised as the mean
for the level of grouping chosen. However, additional metrics
can be selected using the adjacent checkboxes, to include higher
moments of the distribution inclding median, variance, skewness,
kurtosis, min and max. These are added to the tabulated results and
also included when the data is saved.

The Save histograms button generates a histogram for each
metric and category and presents these in separate windows that
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can be saved or printed (Fig. 10.7).
The data and images from the analysis can be saved using the

controls in the Output panel. The Save image button prompts the
user for a filename and saves a version of the image and colorbar
currently displayed with all the annotations in ’*.png’ and ’*.pdf’
format. If the full size checkbox is activated, the images will be
saved in their native resolution. The current dropdown menu
controls the background for some graph plots, and can be set to
white or black to aid visibility. Likewise, the white checkbox forces
the background to white for some plots.

If the full name checkbox is ticked, the filename entered will be
affixed with the original filename. Alternatively, if left unchecked,
the prefix will be appended instead.

The Save data button writes all the data on the ER tubules, ER
cisternae, tubule morphology and polygonal regions to separate
sheets in an Excel file. Each sheet includes columns specifying the
filename, channel, section and frame. Note: if any metric includes a
NaN or Inf value, it appears to be replaced in Excel with a value of
65535.

The Panels button saves a copy of the all the panels in the inter-
face as ’*.png’ files that can be used to tailor the illustrations in this
manual to any specific application. The export checkbox will cause
images to be saved at each step in the entire processing sequence.
This is useful to generate a record of the analysis, but is slow as
many large images will be written to disk. The white checkbox and
adjacent dropdown menu, determine the background image when
automatically saving some of the graphs.
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Figure 10.15: Output controls
used to save data and images
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Analysis of the ER cisternal structure

Figure 11.1: Schematic diagram
of ER cisternae illustrating the
different types of morphological
and texture based analysis that are
possible

Once the ER cisternae have been segmented (see Chapter 9),
the Statistics button in the Cisternal analysis panel (Fig. 11.2(a))
calculates various morphological metrics for each binary object at
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each time-point (Table 11.1), that collectively describe the shape and
size of each cisterna.

a

Figure 11.2: Schematic outline of
ER cisternal analysis

Metric Explanatory notes

ID The node identity displayed on the image overlay
area The area of each cisterna
major axis
and minor
axis

length (in pixels) of the major and minor axis of the
ellipse that has the same normalized second central
moments as the cisterna

orientation The angle between the x-axis and the major axis
solidity The proportion of the pixels in the convex hull that

are also in the cisterna
perimeter The perimeter of the cisterna
elongation The ratio of the major axis to the the minor axis
roughness The ratio of the perimeter2 to the area
circularity The ratio of the estimated radius determined from

the area to the estimated radius determined from the
perimeter

Table 11.1: Morphological metrics
calculated for each cisternal sheet

The cisternal image can also be used to extract intensity-based
metrics from the background-subtracted image or indeed other
images, such as the optical-flow speed or persistency (Table 11.2).

Metric Explanatory notes

mean Intensity, max
Intensity and min
Intensity

metrics calculated for each cisterna from the
background-subtracted image

node degree The number of connecting tubules incident on
the cisterna

node strength The sum of the widths of the tubules connect-
ing to the cisterna

average node strength The node strength divided by the node degree
max persistency and
mean persistency

The maximum and average persistency of
pixels in each cisterna

speed and direction The average speed and direction of movement
of pixels in the cisterna

max distance and
mean distance

The maximum and average distance of any
pixel to the edge of the cisterna

variance The square of the difference in intensity of each
pixel from the mean within the cisterna

Table 11.2: Intensity-based met-
rics calculated for each cisternal
sheet

11.1 Texture metrics

Texture analysis provides some information on whether the cister-
nae can be regarded as homogeneous sheets, or include additional
structure that might be consistent with a bundle of closely ap-
pressed tubules1 or heterogeneous protein distribution. An analysis

1 C.J. Nixon-Abell, J.and Obara, A.V.
Weigel, D. Li, W.R. Legant, C.S.
Xu, H.A. Pasolli, K. Harvey, H.F.
Hess, E. Betzig, C. Blackstone, and
J. Lippincott-Schwartz. Increased spa-
tiotemporal resolution reveals highly
dynamic dense tubular matrices in the
peripheral er. Science, 354:aaf3928, 2016
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of the texture within each cisternal sheet is calculated from the Gray-
Level Co-occurrence Matrix (GLCM, Table 11.3)2. For each pixel in 2 R.M. Haralick, K. Shanmugam, and

I. Dinstein. Textural features for image
classification. IEEE Transactions on
systems, man, and cybernetics, pages
610–621, 1973

the segmented cisternal region, the GLCM examines pixels within
a certain distance, set by the distance textbox, in four directions
(NW,N,NE,E) and constructs an accumulator array where the row
and column indices correspond to the intensity value of the target
pixel and the neighbours, grouped into a number of equal intensity
bins. The number of bins in the GLCM matrix is set by the nbins
textbox. In the current implementation, the distance is measured
in multiples of the radius of the smallest tubule, set by FWHMmin.
Pressing the Statistics button will display a colour-coded GLCM
(Fig. 11.3).

10 20 30

10

20

30

Figure 11.3: A Gray-level Co-
occurence Matrix (GLCM)

The contrast, correlation, energy and homogeneity of the GLCM
are calculated individually for each cisterna (Table 11.3). If the
value of distance is greater than 1, the GLCM is calculated and
summed for each integer distance up to the value set. In addition,
results are summarized for all the pixels in the network to give a
single value for contrast all, correlation all, energy all and homogeneity
all. These texture metrics are regarded as orthogonal descriptors
of the GLCM, and represent a compact summary of the texture
information (Table 11.3).

Metric Explanatory notes Equation

contrast A measure of the intensity contrast between a pixel
and its neighbour. Values range from 0 to (nbins-1)2.
An idealised cisternal sheet would have a contrast
of zero.

∑
i,j
|i− j|2 p(i, j)

correlation A measure of how correlated a pixel is to its neigh-
bour. Values range from -1 (un-correlated) to 1

(fully correlated). An idealised cisternal sheet
would have a value of 1.

∑
i,j

(i− µi)(j− µj)p(i, j)
σiσj

energy Gives the sum of squared elements in the GLCM.
Values range from 0 to 1. An idealised cisternal
sheet would have an energy of 1.

∑
i,j

p(i, j)2

homogeneity Measures the closeness of the distribution of ele-
ments in the GLCM to the diagonal. Values range
from 0 to 1. An idealised cisternal sheet would have
a value of 1

∑
i,j

p(i, j)
1 + |i− j|

Table 11.3: Metrics calculated
from the Gray-level Co-occurrence
Matrix11.2 Cisternal perimeter measurements

The Perimeter button traces the pixel intensity around the perime-
ter of each cisterna, excluding the junctions with the tubules (Fig.
11.4(b)). The result can be visualised using the graph checkbox,
with the dropdown menu below selecting one of the metrics begin-
ning with P (Fig. 11.5). The relevant metric is plotted on as a graph
or pixel skeleton (Fig. 11.6)

b

Figure 11.4: (b) Controls to
measure along the perimeter of the
cisternae
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a

Figure 11.5: Controls to display
the results of the cisternal analysis

Figure 11.6: Cisternal perimeter
color-coded by length, annotated
with the cisternal ID (cyan) and
homogeneity (green)

Perimeter profiles can also be presented unwrapped as a set of
horizontal lines representing the intensity along the profile stacked
to give an image if the Trace checkbox is active. The Tr button cal-
culates the trace and displays it in a separate window that can be
saved independently. The trace function is most useful in multi-
channel images to see how the two spearate protein distributions
relate to each other along the cisternal boundary.

11.3 Cisternal profile measurements

Rather than trace along the perimeter of the cisternae, the Profile
button (Fig. 11.7(c)) measures the average intensity distribution
along radial transects normal to the boundary of the cisterna both
inwards and outwards (Fig. 11.8). this is most useful for multi-
channel images where one labelled protein is localised to the cis-
ternal perimeter, whilst the other is localised to the ER lumen, for
example.

a

b

c

Figure 11.7: Controls to mea-
sure along the perimeter of the
cisternae

Figure 11.8: average radial tran-
sect
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Analysis of the intermembrane polygonal regions

Figure 12.1: Segmentation of the
polygonal regions enclosed by
the ER network. Each region is
colour-coded by it’s area

The Polygons button in the Polygonal analysis panel (Fig. 12.2)
segments the polygonal regions that are fully enclosed by the ER
network (Fig. 12.1) and calculates various morphological metrics at
each time-point (Table 12.1) in a similar manner to the ER cisternae.

Figure 12.2: Controls for analysis
of polygonal regions

Metric Explanatory notes

ID The identity of the polygonal region
area The area of each polygonal region with the ER tubules

thinned to a single-pixel wide skeleton
major axis
and minor
axis

length (in pixels) of the major and minor axis of the
ellipse that has the same normalized second central
moments as the region

orientation The angle between the x-axis and the major axis
solidity The proportion of the pixels in the convex hull that

are also in the region
perimeter The perimeter of the region
elongation The ratio of the major axis to the the minor axis
roughness The ratio of the perimeter2 to the area
circularity The ratio of the radius determined from the area to

the radius determined from the perimeter
max distance The furthest distance within the region to the ER

network
mean distance The average distance within the region to the ER

network
exclusive area The area excluding the width of the ER tubules

Table 12.1: Morphological metrics
calculated for each cisternal sheet





13
Image Import

13.1 Introduction

This package was originally designed to import confocal image
stacks into Matlab, particularly for ratio imaging applications. The
import options allow some channel registration, time-series align-
ment, sub-sampling, smoothing and z-projection. Most file formats
can now be handled using the Bio-Formats program (Linkert et al.
2010

1) called by the import functions:

1 M. Linkert, C. T. Rueden, C. Allan,
J. M. Burel, W. Moore, A. Patterson,
B. Loranger, J. Moore, C. Neves,
D. Macdonald, A. Tarkowska, C. Sticco,
E. Hill, M. Rossner, K. W. Eliceiri, and
J. R. Swedlow. Metadata matters: access
to image data in the real world. J Cell
Biol, 189:777–82, 2010http://www.openmicroscopy.org/site/support/bio-formats4/

http://loci.wisc.edu/software/bio-formats

The import routines for Zeiss *.lsm images use the LSM file tool-
box written by Peter Li and available on the Mathworks Website.

http://www.mathworks.co.uk/matlabcentral/fileexchange/

8412-lsm-file-toolbox

http://www.openmicroscopy.org/site/support/bio-formats4/
http://loci.wisc.edu/software/bio-formats
http://www.mathworks.co.uk/matlabcentral/fileexchange/8412-lsm-file-toolbox
http://www.mathworks.co.uk/matlabcentral/fileexchange/8412-lsm-file-toolbox
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The latest versions of Java needs to be installed, and is available
from:

http://www.java.com/en/

13.2 File Selection

The file selection panel shows:

• a Directory button that opens a standard dialog box to select a
different directory

• sub-directories of the current folder

• individual files in the current directory

• the currently selected file

• the available drives

• image files within a Leica "lif" database (if appropriate)

Directory
C:\Users\dops0035\Documents\Research\Projects\ER - 

Verena\Movies

Sub-Directories Files

Allow multiple selections

GFP-HDELAirymovie_3_Airyscan Processing.czi

GFP-HDELAirymovie_Airyscan Processing.czi

GFP-HDELBFAAirymovie_2_Airyscan Processing.czi

GFP-HDELBFAAirymovie_Airyscan Processing.czi

GFP-HDELTAR2-RFPmovie_2_Airyscan Processing.czi

GFP-HDELTAR2-RFPmovie_3_Airyscan Processing.czi

GFP-HDELTAR2-RFPmovie_4_Airyscan Processing.czi

GFP-HDELTAR2-RFPmovie_Airyscan Processing.czi

GFP-HDELmovie_)2_Airyscan Processing.czi

GFP-HDELmovie_Airyscan Processing.czi

GFP-LNP1Airymovie_2_Airyscan Processing.czi

GFP-LNP1Airymovie_3_Airyscan Processing.czi

GFP-LNP1Airymovie_4_Airyscan Processing.czi

GFP-LNP1Airymovie_5_Airyscan Processing.czi

GFP-LNP1Airymovie_6_Airyscan Processing.czi

GFP-LNP1Airymovie_7_Airyscan Processing.czi

GFP-LNP1Airymovie_Airyscan Processing.czi

LNP1-RFP GFP-HDEL 250s movie.czi

UB10-L2.1-GFP GFP-HDEL airy movie 3_Airyscan Processing.czi

UB10-L2.1-GFP GFP-HDEL airy movie 5_Airyscan Processing.czi

.

..

processed data

Drives

c:\

Bioformats database

Bioformats database files

Stacker

Figure 13.1: File selection panel

If the Allow multiple selections checkbox is ticked, a range of
files can be loaded in one operation. This is useful to join a set of
consecutive sequences from the same time-series experiment. The
images must have the same dimensions in x and y, and have the
same number of channels. Images are sorted in alphabetical order
in the listbox and will be imported in this order. If a different order
is required, each file has to be added in sequence manually.

A set of checkboxes (Fig. 13.2) are available to display a re-
stricted set of file types or all files in the directory (*.*)

File types

*.lsm

*.avi

*.mat

*.tif

*.jpg

*.*

*.lif

*.dv

*.czi

Figure 13.2: Setting the file
extensions

http://www.java.com/en/
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Once the required file(s) have been selected, the information on
each file can be loaded by double clicking or using the right-arrow.

If the system can read the file format information, The file
name(s) will then appear in the output list box, and the image
details shown in both the Input details and Output details panels
(see Fig. 13.3). If multiple files have been selected, only the details
of the last file will be shown. Input and output details will be the
same at this stage as no additional processing steps have happened.

Input details

356

356

2  

1  

100

1  

1  

1  

0  

ny:

nx:

nl:

nz:

nt:

x spacing:

y spacing:

z spacing

time step:

UB10-L2.1-GFP GFP-HDEL airy 

movie 3_Airyscan Processing.czi

Figure 13.3: The input details
panel: displays of the size and
calibration values for the current
image

If the system can not pick the pixel size information or time
interval, a dialog box will appear with prompts for the user to enter
the required information (see Fig. 13.4).

Figure 13.4: Dialog box prompt-
ing for the x,y,z spacing and the
time-interval

13.3 Combining separate channels

The Stacker button is used to combine individual *.tif images from
multiple channels and time-points into a single matlab file if they
are numbered in sequence. The user is prompted for:

• the number of channels to combine and the pixel resolution (Fig.
13.5).

• an Excel file that contains the time stamp for each image as
a single column. If this is not present, then the time interval
defaults to 1;

• the first image for channel 1 (to get the core filename)

• the first image for channel 2 (to get the second core filename). Figure 13.5: Setting the number
of channels and pixel spacing
when combining separate tif
images

The images are then automatically loaded and concatenated into
a single matlab file which is automatically saved. The matlab file
can be loaded as normal.

13.4 Importing images from different formats (including Leica
databases)

The package can open most file formats using the Bio-Formats
package. Leica images are stored in a single *.lif database and
cannot be accessed directly. If a "lif" database is selected, or a
format that cannot be read in directly, the Bio-Formats program
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reads in the list of image stacks or time-series and displays these in
a separate pop-up window (see Fig. 13.6).

Figure 13.6: The Bio-Formats
import window: Once a Leica
database has been loaded, one of
the image files can be selected and
imported into the MatLab environ-
ment. The calibration parameters
have to be set manually

The file is selected by double clicking in the list box and the
name appears in the box underneath. Clicking the Load file button
will import the image and display the first three channels of the
first time/z-plane in the window. The x, y and z pixel sizes have
to be entered manually into the appropriate boxes, along with the
Time interval and bit depth.

Clicking OK, will import the selected file into the main interface.
It is also possible to view the full files at this stage using the View
file button, or save the file as a matlab array using the Save file
button.

13.5 Image display

Once the images have been loaded, the first image of a time series
will be displayed in the image window (Fig. 13.7).

If the image is a z-stack, the median plane will be displayed.
If it is a multi-channel image, the median channel image will be
displayed. If multiple separate image files have been loaded, a
different file can be displayed by selecting the appropriate file from
the output list box. A number of controls are available to alter how
the image is displayed (Fig. 13.8).

For multi-channel images, different channels can be assigned to
the R, G and B image planes using the drop-down menus to con-
struct a RGB image, which will be displayed if the RGB checkbox is
active.

The image size can be increased using the Zoom slider. If the
image is larger than the display window, horizontal and vertical
scroll bars will appear. The fit button maximises the size of the
image to fit within the display window. The 100% button displays
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Figure 13.7: Image display panel:
The image has been loaded in and
an RGB version of the first three
wavelength channels displayed.
The red rectangle shows a user-
defined region that will be cropped
from the original file

Display

1Channel

1Z

50Time

1.15449Zoom fit

100

1

red

2

green

2

blue

RGB

max

Figure 13.8: The display panel:
Controls are provided to allow
the user to select which channel,
section or time-point to display,
with further options to combine
channels into an RGB image, or
display a maximum projection of
the z-stack (if present)

the image at a 1:1 image pixel to display pixel size.
The Channel slider displays a single channel image (if the RGB

checkbox is un-ticked).
The Z slider scrolls through z-sections if the image contains 3-D

(x,y,z) stacks. The max checkbox displays a maximum projection of
the current z-stack.

The Time slider scrolls through each image in the time series.

13.6 Image crop and sub-sampling options

The image can be cropped by entering the First and Last pixel
co-ordinates independently in the X, Y, Z or T text boxes (Fig.
13.9). Alternatively, a region-of-interest (ROI) can be selected in
x and y using the Set ROI button. This prompts the user to draw
a rectangular ROI on the image, which is then displayed in red.
Completion of the ROI will update the values in the text boxes.
Values can be reset using the Reset button if required.

The Inc text boxes allow (integer) sub-sampling independently in
each image dimension.

The Filt text boxes allow spatial or temporal averaging over the
designated number of pixels.

A series of checkboxes (ch1. . .ch6) are available to select which
channels are to be included in the output image. Usually the bright-
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Crop# and sub-sampling options

Last

Inc

356

X

1

356

Y

1

1

Z

1

100

T

1

Filt

Set ROI

Reset

1 1 1

100

1

First

ch1 ch2 ch3 ch4 ch5 ch6

1 1 1 1

Figure 13.9: The crop panel:
Provides controls to crop, sub-
sample and filter images

field channel is not included in this selection, as it is processed
separately (see Section 13.10 - Bright-field image processing).

The file details in the Output details panel should update to
reflect the cropping and sub-sampling chosen. If multiple images
have been loaded, the crop and sub-sampling options apply to all
the files.

13.7 Alignment options between wavelength images

Options are available to correct slight mis-registration in x,y be-
tween individual wavelength images using the Channel alignment
controls (Fig. 13.10). A reference channel, typically containing the
best image selected using the Z and T sliders, is chosen using the
Ref channel drop-down list.

Channel alignment

0 0 0 0 0 0

ch1 ch2 ch3 ch4 ch5 ch6

0 0 0 0 0 0

Vertical

Horizontal

Align Channel1reset Ref.

Figure 13.10: The channel align-
ment panel: Provides controls to
allow sub-pixel registration be-
tween each channel and a selected
reference channel

This acts as a template for cross correlation of any other channel,
selected using the ch1. . .ch6 checkboxes. The Align Channel button
calculates the Vertical and Horizontal pixel offsets between the
reference channel and the selected channels using cross-correlation
across the whole image. These offsets are applied using bi-linear
interpolation when the images are actually loaded.

The image display is modified during this process to display the
before and after images in magenta and green.

13.8 Alignment options over time

Some level of correction for stage x,y drift or specimen movement
can be achieved using the Time series alignment controls (Fig.
13.11). A reference channel (Ref.) is selected that has good contrast
and features that are present in all images in the series, using the
Z and T sliders, and, if necessary, a particular file if multiple files
have been loaded simultaneously.

The Set region button prompts the user to select a ROI on the
target image that will be used as a template to calculate the x,y
pixel offsets, rotation and scaling for the corresponding image
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Time series alignment

Set region

1Ref.translationtransform

firstalign to:

estimate

use

gradient smooth 3 Manual constrai...

Figure 13.11: The Time series
alignment panel: Provides con-
trols to define a region for image
alignment through the time-series,
using a reference image

in subsequent time-points using cross-correlation and bi-linear
interpolation. The region used as a template must be within the
red ROI outline, if this has been used to crop the image, and is
highlighted in blue. The same offsets are applied to all channels
and z-planes for each time point. The alignment only takes place
when the images are actually loaded if the use checkbox is ticked.

A number of different transform types can be applied with
increasing degrees of freedom, including translation, for (x,y) trans-
lation, rigid, for translation and rotation, similarity for translation,
rotation, and scale and affine, for translation, rotation, scale, and
shear. The estimate checkbox can improve registration for some
time-series by providing an initial estimate of the transform using
phase correlation.

In addition, registration can be achieved by matching Speeded-
Up Robust Features (SURF) or maximally stable extremal regions
(MSER) detected in each image. These are much faster than regis-
tration using cross-correlation and can accommodate translation,
scale and rotation, but are also sensitive to relatively small changes
in key features due to brownian motion of vesicles for example.

The align to: drop-down menu sets the reference image to the
first in the series or the previous image. In addition, the smooth
checkbox allows smoothing with a kernel set by the drop-down
menu prior to registration. Note: this smoothing only applies to
calculation of the alignment transfom, not the actual image data.
The gradient checkbox can be used to align based on the local im-
age gradients, which may be useful if there are large homogeneous
features in the image.

13.9 Image projection options

It is possible to reduce the image dimensionality by projecting
data along the z-axis using the drop-down menu in the Projection
options panel (Fig: 13.12).

Projection options

ch1 ch2 ch3 ch4 ch5

Select maximum projection plane based Select maximum projection plane based 

none

ch6

xy z-stretch

Apply max plane to:-Apply max plane to:-

ch1 ch2 ch3 ch4 ch5 ch6

Figure 13.12: The projection
panel: allows the user to reduce
the image dimensionality by
extracting a sub-set of the data
in the z-dimension, or to re-
orient the image stack to display
xz or yz views. A number of
different projection options can be
selected and applied to different
combinations of channels

• Maximum: displays the pixel with the maximum intensity in z
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for each channel (maximum intensity projection or MIP). This
is a common approach to visualise data, but should not be used
as a precursor to quantitative measurements, particularly when
ratioing two channels, as it selects the ’noisiest’ pixel at the
extreme of the distribution along the z-axis, and pixels from
different positions in z for different channels will appear in the
projected image, making a nonsense of the ratio image.

• Minimum: displays the pixel with the minimum intensity in z
for each channel. This is rarely useful for fluorescence images,
but can be helpful for bright-field processing. Nevertheless, it is
recommended that bright-field processing is handles separately
(see Section 13.10 - Bright-field image processing)

• Average: gives an average brightness projection in z, which
provides good noise reduction and may be useful for simple
objects that do not overlap in the z-direction.

• Max plane: this gives the user the option of selecting the z-
position of the brightest pixel in one-or-more channels and then
extracting the same (x,y,z) pixel (voxel) from the other channels.
It is recommended that the imaged is smoothed in z (as well
as x and y), before this operation to ensure that the brightest
pixel is more likely to correspond to the centre of the object of
interest. This approach is required if different channels are going
to be ratioed later on to ensure that information from the same
(averaged) voxels are compared.

• Mx + mx plane: This provides an option to calculate the maxi-
mum plane projection, based on specific selected channel(s) that
extracts the appropriate (x,y,z) voxel from a second set of chan-
nels, selected by the second set of checkboxes. The remaining
channels are processed using a simple maximum. This is useful
for quantitative ratioing for the max plane images, which typi-
cally involve two wavelength channels and an autofluorescence
channels for bleed through correction, and a morphological rep-
resentation of the other channels from the (smoothed) maximum
intensity projection.

13.10 Bright-field image processing

A bright-field image is often collected simultaneously with the
fluorescence channels using a (non-confocal) transmission detector.
Bright-field images can be processed separately to accentuate
more useful information using the Bright field output controls
(Fig: 13.13). The simplest form of processing is a single plane,
selected by the position of the Z-slider from the bright field channel
(channel). An amount of noise filtering can be applied using the
process selected by the smoothing drop-down list (mean, median or
Wiener) over a square x,y region specified by the kernel drop-down
list.

Bright field output

1

minimum

noneplane

process

channel

1

adaptive histogram equalisation

kernel

meansmoothing 1kernel

Figure 13.13: The bright field
output panel: Provides controls
to allow selection of single bright-
field image planes or various
algorithms to project the bright-
field images, along with some
contrast enhancement



image import 89

If a projection option is chosen, the process required can be se-
lected from the process drop-down menu. The algorithms available
are designed to highlight pixels that might contain the most useful
information within a local neighbourhood defined by the kernel
drop-down menu.

Whether a projection of single plane option is chosen, the con-
trast of the resulting image can be improved using contrast-limited
adaptive histogram equalisation (CLAHE) by checking the adaptive
histogram equalisation box.

13.11 Saving or loading the processing settings

The Save settings button in the Save options panel saves the set-
tings used for processing in a matlab file format, with the filename
and a settings suffix (Fig: 13.14. The parameters can be re-loaded
using the Load settings at a later stage. Note: when the settings
are re-loaded, the user is prompted to re-set the alignment box for
the time-series, and the cropping ROI is not available and must
therefore be set-up again.

Settings

Save

Load

Edit

panels

Figure 13.14: The Settings op-
tions panel: allows the user to
save the loaded image and the
processing settings

The Save mat button saves the processed fluorescence images
and, if appropriate, bright-field images in a matlab file format. This
can be re-loaded using the same interface at a later stage.

The Save panels button saves "png" images of each of the panels
in the image and can be used to update this manual for any specific
applications.

13.12 Loading the selected files

Once all the processing steps have been completed, the selected
files can be loaded using the Load button (Fig: 13.15). If this is
successful, the View button will be enabled and, if a separate bright
field image has been processed, the View bf button. Clicking the
View button will open a separate window with a video Viewer
(see Chapter 14 - Viewer Program). There is an additional option to
Convert the image format to 8-bit, 16-bit, single or double precision,
using the adjacent drop-down menu. Images in 12-bit can be re-
normalised to 16-bit using the 12 to 16 bit checkbox. Images can
also be inverted at this point using the invert checkbox.

Load file

Load

View View bf

Convert 8-bit 12 to 16 bit

invert

Figure 13.15: The Load file panel:
The Load button imports the se-
lected image(s) and applies all the
alignment, sampling, smoothing
and projection parameters chosen

13.13 Saving the processed files

If the image files have been loaded satisfactorily, clicking the OK
button will return to the main program. The Cancel button will
return to the main program, but without exporting the processed
image file. The matfile button saves a copy of the processed image
and information on the processing steps to a MATLAB file. This
can be loaded later without having to re-process the original image.

Export file

OK Cancelmatfile

Figure 13.16: The export file panel
to exit the program or save the
processed image
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Viewer Program

14.1 Introduction

The video Viewer allows the output of any processing steps to be
animated on screen or saved in standard movie formats format.
Images can contain multiple channels, although a maximum of
three can be shown in RGB format. The first image in the file is
displayed when the viewer opens. If the image is too large for the
display window, the central portion will be displayed with scroll
bars to move around the image.
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14.2 Movie playback controls

The Movie controls (Fig. 14.1) can be used to Start or Stop play-
back. The normal image orientation is viewed in the xy plane. If
the data has multiple z-sections, the orientation can be changed to
view animations in xz or yz orientation using the drop-down menu.
The Z str textbox allows control of the amount of interpolation in
the z-axis needed to correct for the asymmetry in x,y and x pixel
spacing. The type of interpolation can be set using the drop-down
menu from nearest, linear or bicubic.

Figure 14.1: The movie con-
trols panel: provides options to
start/stop the animation or display
max or average z-projections

The average (ave Z) or maximum (max Z) checkboxes generate
the corresponding projection for the current time-point if the data
has multiple z-sections.

The hist eq checkbox uses contrast-limited histogram equali-
sation (CLAHE) to improve the overall contrast in the image. If
the data has more than one z-section, the maximum projection is
calculated first before the CLAHE enhancement. The show scale
and show time checkboxes toggle display of the time stamps set in
the Time stamps panel, and the scale bar set in the Scale bar panel.

14.3 Display controls

The Display controls panel (Fig. 14.2) can be used to display im-
ages in their original orientation, or as a rotated image (90 left, 90
right or 180) using the drop-down menu.

If the image is initially a single intensity channel the colour map
drop-down menu can be used to apply a colour look-up table (LUT)
to the image.

The bit depth controls the number of bits to scale each channel
in the display, and automatically adjusts the maximum scaling of
the channel intensity controls.

Figure 14.2: The display controls
panel: set the image orientation
and control the dimensions for
animation

Note, many microscopy images contain 12 bits of information (0-
4095), but are stored in 16-bit format. This means the bit-depth may
be automatically set to 16 (0-65535) when the image is loaded. As
a result the screen will appear black until the bit-depth is set to 12.
In other situations, the software cannot pick up the correct setting
for the bit-depth and defaults to a value of 1. Images may appear
completely saturated until the bit-depth is set to the appropriate
value, usually 8.

The speed slider adjusts the speed of playback.
The Z Section or Time sliders select a specific z-section and time

point and also have check-boxes to control whether images are
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animated in this dimension during playback.
The increment slider controls the gap between images during

playback.
The Zoom slider controls the scale of the image displayed. If the

image is larger than the display window, horizontal and vertical
scroll bars appear automatically.

14.4 Image brightness controls

Images are usually imported in RGB format where each channel
corresponds to a different wavelength image. However, pseudo-
colour coded ratio images are constructed in HSV colour space
where the parameter of interest is coded as Hue, and the intensity
and/or saturation are used to represent the strength of the original
signals. Switching between RGB and HSV display is achieved with
the RGB drop-down menu on the Channel controls panel (Fig.
14.3).

Figure 14.3: The channel controls:
Select the channels to display
and the minimum and maximum
intensity for each channel

In RGB mode, the R, G and B drop-down menus can be used to
select which channel should be displayed in which colour plane,
and the sliders used to set the minimum and maximum values for
each colour independently.

In HSV mode, the slider and drop-down labels change to repre-
sent the Hue, Saturation and intensity Value. This allows indepen-
dent scaling of these parameters (but only yields a useful image if
the data is in HSV format).

14.5 Projection controls

If the image contains an RGB z-stack or a series of z-stacks collected
over time, the Projection controls panel (Fig. 14.4) can be used to
construct a rocking or tilted animation of the maximum projection
of each channel for each z-stack at different angles.

Figure 14.4: The projection con-
trols: Allows calculation of tilting
or rocking projections of z-stacks

The start text box sets the initial angle for the rotation, whilst the
inc. text box controls the angle between projections. The tilt or rock
is calculated symmetrically about zero between these limits.

The Z str. Sets a z-stretch to correct for the asymmetric sampling
in x,y and z. This is calculated from the nominal z-pixel spacing
divided by the x,y pixel spacing. However, additional correction
may be required depending on the lens and immersion media
using to collect the original data. Ideally, values are based on a
calibrated sample, such as a 15 µm fluorescent sphere, to ensure
correct geometric scaling.

If the original data is an HSV ratio image, the HSV setting needs
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to be selected in the channel controls panel, and the projection will
be calculated initially as a maximum projection of the intensity
value (V). The x,y,z-pixel co-ordinate of this maximum brightness
pixel is then used to extract the corresponding values from the
Hue and Saturation channels. This approach allows projection of
multi-dimensional pseudo-colour coded images.

14.6 Annotation controls

The Time stamps control panel (Fig. 14.5) allows the user to add a
time-stamp to the display. The position controls the location of the
time label (top left, top right, bottom left, bottom right), whilst the
start and interval text boxes and units drop-down menu control the
information to be displayed in a specific font size and colour.

Figure 14.5: The annotation
panels: allows addition of a time-
stamp to each image

The Scale bar control panel Fig. 14.6 adds a scale bar to the
image. The position controls the location of the scale bar, whose
length (in microns) and width are set by the appropriate text boxes.
The calibration between pixels and microns is set by the µm per pix
textbox.

Figure 14.6: The annotation
panels: allows addition of a scale
bar to each image

14.7 Montage controls

A Montage of selected images (Fig. 14.7), defined by the first, inc.
and last can be constructed in a matrix format defined by the rows
and cols controls, with a gap between the images defined by the
border. The montage appears in a new window and can be saved
in a variety of formats.

Figure 14.7: The montage panel:
Sets up a montage of images that
can be subsequently saved in a
grid format

14.8 Output controls

Processed images can be saved to a variety of video formats format
using the Movie button in the Output panel (Fig. 14.8). This pro-
vides choice over the compressionprofile (default is MPEG-4), and,
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if appropriate the quality and frames-per-second (fps) required.
The image series can also be saved as a matlab array using the Save
mat button, or as a single image using the Save image button.

Figure 14.8: The output panel:
Saves the final movie in *.MPEG-
4 format

The Save panels button saves images of all the control panels to
help in construction of an application specific manual.
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Binary editing

Figure 15.1: The GUI interface to
edit binary images

15.1 Loading the images

Binary images are used to mask the boundary of the arena, de-
lineate the food resources or other features, and represent the
single-pixel wide skeleton. Whilst each of these can be generated
automatically, it is often the case that they need to be edited manu-
ally. The Binary editing panel has tools to achieve this.

If the Binary editing window has been called from the network in-
terface, by clicking the edit mask button for example, the template
image and the current mask (if any) will automatically be displayed
as a green-magenta merge when the window opens (Fig. 15.2). Figure 15.2: Main display win-

dow showing a merge between the
guide image (green) and binary
mask (magenta).

The order of the merged image can be changed using the Switch
button, the type of merge using the drop-down menu, or removed
by un-checking the merge check-box (Fig. 15.3). The other display
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controls can be used to change the zoom, adjust the contrast, or, in
multi-dimensional images, scroll through the sections and frames.

Display controls

1.28Zoom

1frame

100%Fit

White level

Black level

255

0

guide binary

falsecolormerge 

Switch

1sectionsection

merge

full scr...

Figure 15.3: Main display win-
dow and controls to select the
images to display, the type of
merge, zoom and contrast.

In some instances, it may be desirable to load a previously
constructed binary image, or a different guide image stored on
disk. Available images (stored as MatLab arrays) can be loaded
into the Binary image list-box (Fig. 15.4) using the Load button. The
appropriate binary image from the arrays present in the matfile
is selected by a single click, and displayed in the selection box. If
the binary image is part of a structure within the matfile, it will be
displayed in the binary arrays and has to be selected from this list-
box. The adjacent right arrow is used to import it into the interface.

Binary image

load binary image...

selection

Save Load

binary arrays

Figure 15.4: Controls to select and
load a binary image (as a Matlab
array).

In a similar manner, a separate guide image can be loaded from
a MatLab file on disk using the controls in the Guide image panel.
If the guide image is part of a MatLab structure, the names of the
available array are shown in the guide arrays list-box, and has to be
selected from here.

The channel drop-down menu is used to choose the channel
to import, whilst the T and Z sliders are used to select the frame
and section, respectively. The check-boxes adjacent to the sliders
give a maximum projection along that dimension. All changes
are displayed in the main figure window. Once the most suitable
combination has been chosen, the image is imported using the right
arrow.

Guide image

load guide image...

selection

Load

1T

1Z

channel

guide arrays

Figure 15.5: Controls to select and
load a guide image (as a Matlab
array).

15.2 Automatic feature selection

The Feature selection panel is used to try to automatically segment
the features of interest (Fig. 15.6).

Feature selection

Find

automaticmethod

Auto1thresh

15radius

5dilate

Select

inv...

3

0weight Figure 15.6: Controls to segment
features in the image

The method drop-down menu provides access to a number of
different thresholding strategies including:

• manual: The user chooses a threshold using the threshold slider.

• automatic: Automatically chooses a threshold when the Auto
button is pressed using Otsu’s criterion1 for multiple thresholds, 1 N. Otsu. A threshold selection method

from gray-level histograms. IEEE Trans.
Systems, Man, Cyber., 9:62–66, 1979
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of which the lowest one is selected. The number of partitions is
selected by the adjacent drop-down menu. A histogram of the
image intensities is shown in the plot panel, with the position of
the threshold(s) shown in green (Fig. 15.7).

Figure 15.7: Histogram of piel
intensities overlaid with the
segmentation threshold

• opening: Applies a grey-scale opening to the image, with the
radius determined by the radius slider. The image is segmented
automatically using the lowest threshold from multi-level thresh-
old menu;

• tophat: Applies a top-hat filter with the radius determined by the
radius slider. The image is segmented automatically using the
lowest threshold from multi-level threshold menu;

• active contour: Applies a grey-scale opening to the image, with
the radius determined by the radius slider. The opened image is
then matched to the underlying objects using an active contour
algorithm.

• local mean: The local mean is calculated using a circular filter
with the radius set by the radius slider and used as a local
threshold. An additional constant can be subtracted from the
threshold using the weight slider.

• local median: The local median is calculated using a circular
filter with the radius set by the radius slider and used as a local
threshold. An additional constant can be subtracted from the
threshold using the weight slider.

• midgrey: The mid-grey threshold is calculated as the average of
the local maximum and minimum, calculated using morphologi-
cal closing and opening operations, respectively, with the radius
set by the radius slider. An additional offset k can be set using
the weight slider.

T(x, y) =
max + min

2
− k (15.1)

• Bernsen2: The method calculates the local contrast and mid- 2 J. Bernsen. Dynamic thresholding of
grey-level images. In International con-
ference on pattern recognition, volume 2,
pages 1251–1255, 1986

grey values in a similar manner to the mid-grey algorithm from
morphological operations. If the local contrast is above the
contrast value k set by the weight slider, the threshold is set
at the local mid-grey value. If the local contrast is below the
contrast threshold, the pixel is classified as part of the object if
the mid-grey value is above 0.5, or background if below.

• Niblack3: The local threshold (T(x, y)) is calculated from the local 3 W. Niblack. An Introduction to Image
Processing. Prentice-Hall, 1986mean (m(x, y)) and the local standard deviation (s(x, y)), with

the radius set by the radius slider, weighted by a factor (k) set
using the weight slider.

T(x, y) = m(x, y) + k ∗ s(x, y) (15.2)

where k is typically -0.2.
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• Sauvola4: The local threshold (T(x, y)) is calculated in a similar 4 J. Sauvola and M. Pietikäinen. Adap-
tive document image binarization.
Pattern recognition, 33:225–236, 2000

manner to the Niblack algorithm from the local mean (m(x, y))
and local standard deviation (s(x, y)), with the radius set by the
radius slider, but the weighting is calculated as:

T(x, y) = m(x, y)
[

1 + k
(

s(x, y)
R
− 1
)]

(15.3)

where R = max(s) and k takes small positive values, typically in
the range 0.2- 0.5, set by the weight slider.

15.3 Manual Editing

If automatic segmentation is not possible, or the results need fur-
ther modification, The ROI edit controls can be used (Fig. 15.8).
Each icon depicts the type of ROI that can be drawn in black, or
erased in red. The sequence of ROIs can be saved (Save ROI)) and
reloaded (Load ROI). In addition, any binary image created with
the Binary edit called from another program is imported with the
existing list of ROIs.

ROI edit

Save ROI

Load ROI

1

Undo

width

reset all

Figure 15.8: Manual editing
controls

The reset all button clears all the ROIs and the segmented image.
The solid black icon set the ROI to fill the image, whilst the solid
red icon erases the full screen. These should only be used as the
first ROI in the series. Each ROI is numbered and listed in the
adjacent ROI list panel (Fig. 15.9), which indicates the shape of the
ROI, the method (draw or erase), the line width (only relevant for
polylines and freehand lines), and whether the ROI should be used
(use check-box).
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14

15

16

shape method width use

full sizeerase 1

line draw 0

freehand ...draw 0

square draw 1

circle draw 0

rectangledraw 0

polygon draw 0

freehand draw 0

rectangledraw 0

line erase 1

freehand ...erase 1

square erase 1

circle erase 1

rectangleerase 1

polygon erase 1

freehand erase 1

Modify DeleteDisplay

Figure 15.9: List of current ROIs

Examples of the different ROI shapes are shown in Fig. 15.3.

For all the geometric shapes, a vertex is added with each left
mouse click, whilst a double-click closes the shape. each vertex
can be re-positioned by hovering over the vertex until a black
circle appears and then dragging the circle to the new position.
Additional vertices can be added along the lines using the A button
on the keyboard. Once the shape is complete, it is plotted in green
for an included region and red for an erased region, along with
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a unique label matching the row in the ROI list. In addition, the
corresponding binary image is shown overlaid in magenta. For the
polyline and freehand line buttons, the line width can be chosen in
pixels from the drop-down menu, or adjusted in the ROI list box.

ROIs can be altered or deleted using the Modify button or
Delete button, respectively, in the ROI list panel (Fig. 15.10). The
Display button can be used to show the ROI overlay and binary
image at any time.
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Figure 15.10: Modify, Display or
Delete specific ROIs

15.4 Output

The OK button returns the adjusted binary iage to the calling
program, along with the list of ROIs and their vertex co-ordinates.
The Cancel button exits without saving any information. The Panel
button saves a copy of each panel in *.png and *.pdf format for
inclusion in the manual.

In addition, the binary image can be saved independently as a
matlab file using the Save button in the Load binary panel (Fig. ref).

Output

CancelOK

Panels

Figure 15.11: Output controls
Binary image

load binary image...

selection

Save Load

binary arrays

Figure 15.12: Option to save the
adjusted binary image as a matfile
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Parameter selector

Figure 16.1: The GUI interface for
the parameter selector program

16.1 Sensitivity analysis with factorial parameter combinations

The parameter selector panel allows a factorial combination of
parameters to be applied to a region-of-interest (ROI) cropped from
the image to compare with a manually-defined ground-truth. The
program is called from the Prototype button in the Skeleton extract
panel of the main interface (Fig. 16.2(a)).

a

Figure 16.2: The Prototype
button in the skeleton extract
panel

The algorithm to apply to the ROI is chosen using the check-
boxes in the Process panel. At the moment, only one algorithm
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should be selected at a time. In a later version, multiple choices are
planned to aid comparison between methods. Once a method has
been selected, the parameter options specific to that method are
displayed in the Available parameters panel (Fig. 16.4).

Process

Neuriteness

BH

AGK

Frangi

PCT

PC

ProcessSteger

Figure 16.3: Check-boxes to select
the enhancement algorithm

Available parameters

1

2

3

4

5

6

7

8

parameter in... ... min inc max new final

enhance_PC_cutOff 0.3000 0 0 0 0.3000

enhance_PC_g 5 0 0 0 5

enhance_PC_k 2 0 0 0 2

enhance_PC_minWav... 3 0 0 0 3

enhance_PC_mult 2.1000 0 0 0 2.1000

enhance_PC_nOrient 6 3 1 6 6

enhance_PC_nScales 3 3 1 6 3

enhance_PC_noiseMe... -1 0 0 0 -1

Figure 16.4: Table showing the
parameters that can be tuned for
the selected algorithm

the current value for each parameter is shown in the initial
column, and cannot be edited. A minimum of two parameters must
be selected using the tune check-boxes, and the range to explore
set using the minimum value (min), the increment (inc), and the
maximum value max. These two parameters are automatically set
as the X variable and Y variable in the Display panel drop-down
menus (Fig. 16.5). Each additional parameter selected for tuning,
is displayed below the drop-down menus as a slider bar running
between Min and Max. these slider are used to scroll through the
images for display. In principle every parameter can be tuned in
this way, but the number of factorial combinations will increase
very rapidly, so it is wise to explore a more limited sub-set of
parameters and values in the first instance, to progressively hone in
on the best combination.

Display

featType

enhance_PC_nScales

enhance_PC_nOrient

X variable

Y variable

imageDisplay

Figure 16.5: Controls to display a
sub-set of the processed images

If a value for a parameter has already been optimised, the new
check-box can be ticked in the Available parameters table, and the
value entered in the final column.

When the Process button is clicked, the ROI will be processed
using the factorial combination of the parameter range set.

Once the ROI has been processed, the results are displayed as
a 2-D grid (Fig. 16.6), labelled with the values for the first two
parameters selected for tuning in the Display panel. Different
parameters can be selected for the display grid using the drop-
down menus and sliders. The type of image displayed can be
selected using the image drop-down menu in the Display panel.

At the end of the processing step, the images are also automati-
cally segmented using the values set in the Initial skeleton panel.
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Initial Skeleton

Skeleton

featType

hyst + hmin

0.1

0.4threshold

hmin

target

method

Figure 16.7: Initial segmentation
controls

These follow the same options available in the main interface and
process the enhanced image to a single-pixel wide skeleton. The
skeleton can be displayed using the image drop-down menu. The
skeletonisation parameters can be changed and just the skeletonisa-
tion step re-run on the set of enhanced images using the Skeleton
button.

16.2 Comparison with a ground-truth skeleton

Pixel skeletons for each ridge enhancement-skeletonisation com-
bination can be scored against a manually digitised ground-truth,
within a chosen tolerance, typically around half the minimum vein
width. Each pixel is classified as a true positive (TP), true negative
(TN), false positive (FP), or false negative (FN). It is important that
the ground-truth image is loaded into the main interface using the
Load GT button (Fig. 16.8) prior to calling the Parameter selector
GUI, so that the same ROI is extracted for comparison.

ab

Figure 16.8: The Load GT button
in the skeleton extract panel
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The target enhanced image for comparison is selected using
the Target drop-down menu in the ROC analysis panel, along with
the segmentation method, and the tolerance (in pixels) that will
still be considered as a ’true positive’ relative to the Ground-Truth
skeleton.

ROC analysis

GCC

hyst + h...

3

ROC

0.20.020

maxmin inc

10.10

featType

threshold

hmin

tolerance

method

target

Figure 16.9: ROC analysis con-
trols

If hysteresis thresholding is selected, the threshold options are
enabled, and can also be set to run from min to max, with a given
increment (inc). The analysis can be restricted to the giant con-
nected component (GCC), using the GCC check-box, as a crude test
of connectivity in the resultant skeleton. If the WS + hmin or hyst +
hmin options is chosen, the hmin parameter is applied over a range
of values given by the min, increment (inc), and max text boxes.

The ROC button initiates the analysis, and results are presented
as a ROC curve, P-R plot, z-score or histogram, depending on the
setting of the ROC plot drop-down menu in the ROC plots panel.

ROC plots
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precision
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ROC plot P-R hold ROC clear

Figure 16.10: graphical output for
a PRC curve

Precision-Recall (PRC) analysis is used in preference to Receiver
Operating Characteristic (ROC) plots, as the former are better
suited to imbalanced datasets 1, when the number of true negatives

1 T. Saito and M. Rehmsmeier. The
precision-recall plot is more informa-
tive than the roc plot when evaluating
binary classifiers on imbalanced
datasets. PLOS One, 10:e0118432, 2015(TNs) from the background is expected to be much greater than the

true positives (TPs) from the skeleton. Precision was calculated as
TP/(TP+FP), and Recall as TP/(TP+FN).

Results for each run of the hmin or threshold parameter are con-
nected by a dotted line. It should be noted that hmin and threshold
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do not behave quite as a conventional tuneable threshold in ROC
or PRC analysis, as the output (a connected skeleton) does not nec-
essarily correlate linearily with increasing or decreasing values of
the parameter. For example, as the threshold is lowered, one might
expect fewer FNs, more TPs, but also more FPs. However, if the
threshold merges two adjacent ridges, the resultant skeleton my
be incorrectly positioned mid-way between both when the binary
image is skeletonised. This give a decrease in FPs and and increase
in FNs and FPs, and the overall performance may be worse than
more stringent parameter settings

The ROC clear button erases the plot, whilst the hold check-box
allows multiple analyses to be superimposed.

In addition to the PRC or ROC plot, the best performance can be
estimated by a summary statistic selected from the ROC summary
panel (Fig. 16.11).

ROC summary

0 5 10 15
0

0.5

1

F
1

ROC summary

F1

evaluation

2

BetaBeta

Summary

mark

0.4

threshol

0.14

hmin

Figure 16.11: ROC summary
controls and color-coded plot for
the F1 parameter

The best performance is assessed from the highest evaluation
score, using a metric selected from the drop-down menu from
dprime, F1, MCC, F2 or Fβ. The Fβ score represents a harmonic
mean of recall and precision, where Fβ, can be tuned to weight
recall (β = 2) or precision (β = 0.5) more highly according to
equation 16.1:

Fβ = (1 + β2)
Precision× Recall

(β2 × Precision) + Recall
(16.1)

The maximum score is colour-coded red on the histogram out-
put, values within 98% coloured green and 95% coloured blue. If
the mark check-box is ticked, the same colour coding is applied to
the border of the corresponding image in the image grid. In addi-
tion, the best score is highlighted on the PRC or ROC plot with a
red circle.

If multiple parameters have been selected for the sensitivity
analysis, the image with the best response may not be visible in the
current grid. In this case, the image can be revealed by scrolling
through the different parameter values using the sliders in the
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Display window. If the user is happy with the ’best’ parameter
combination, clicking on the preferred image will update the final
parameter combination in the Available parameters table.

The ROC option in the Display panel, allows visualisation of
the output of the ROC analysis in terms of TPs (green), FNs (red)
and FPs (blue), for each of the parameter combinations visible
(Fig. 16.12).

Figure 16.12: Grid showing TP
(green), FN (red) and FP (blue)
for skeletons derived from the first
two parameters in the sensitivity
analysis

16.3 Output

The current image grid can be saved using the Images button in the
Output panel, whilst the complete set of summary statistics for each
parameter combination can be saved to an Excel spreadsheet using
the Data button. The Panels button saves each panel as a *.png and
*.pdf image for inclusion in the manual.

Output

OKCancelImages Panels Data
Figure 16.13: Output controls

When the Parameter selector GUI is closed the optimised param-
eters are returned to the main program. At this stage they are not
automatically used to update the parameter settings to avoid acci-
dentally corrupting the current parameters, thus if changes have



parameter selector 109

been made, they need to be explicitly changed using the edit button
in the Param panel.
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